与えられた2つの式を展開する問題です。 (1) $(3x+1)(x+2)(3x-1)(x-2)$ (2) $(x+y+z)(x-y+z)(x+y-z)(x-y-z)$代数学展開多項式因数分解代数2025/6/291. 問題の内容与えられた2つの式を展開する問題です。(1) (3x+1)(x+2)(3x−1)(x−2)(3x+1)(x+2)(3x-1)(x-2)(3x+1)(x+2)(3x−1)(x−2)(2) (x+y+z)(x−y+z)(x+y−z)(x−y−z)(x+y+z)(x-y+z)(x+y-z)(x-y-z)(x+y+z)(x−y+z)(x+y−z)(x−y−z)2. 解き方の手順(1) (3x+1)(x+2)(3x−1)(x−2)(3x+1)(x+2)(3x-1)(x-2)(3x+1)(x+2)(3x−1)(x−2) を展開する。まず、(3x+1)(3x−1)(3x+1)(3x-1)(3x+1)(3x−1)と(x+2)(x−2)(x+2)(x-2)(x+2)(x−2)をそれぞれ計算する。(3x+1)(3x−1)=(3x)2−12=9x2−1(3x+1)(3x-1) = (3x)^2 - 1^2 = 9x^2 - 1(3x+1)(3x−1)=(3x)2−12=9x2−1(x+2)(x−2)=x2−22=x2−4(x+2)(x-2) = x^2 - 2^2 = x^2 - 4(x+2)(x−2)=x2−22=x2−4したがって、(3x+1)(x+2)(3x−1)(x−2)=(9x2−1)(x2−4)(3x+1)(x+2)(3x-1)(x-2) = (9x^2 - 1)(x^2 - 4)(3x+1)(x+2)(3x−1)(x−2)=(9x2−1)(x2−4)=9x2(x2−4)−1(x2−4)= 9x^2(x^2 - 4) - 1(x^2 - 4)=9x2(x2−4)−1(x2−4)=9x4−36x2−x2+4= 9x^4 - 36x^2 - x^2 + 4=9x4−36x2−x2+4=9x4−37x2+4= 9x^4 - 37x^2 + 4=9x4−37x2+4(2) (x+y+z)(x−y+z)(x+y−z)(x−y−z)(x+y+z)(x-y+z)(x+y-z)(x-y-z)(x+y+z)(x−y+z)(x+y−z)(x−y−z) を展開する。(x+y+z)(x−y+z)=((x+z)+y)((x+z)−y)=(x+z)2−y2=x2+2xz+z2−y2(x+y+z)(x-y+z) = ((x+z)+y)((x+z)-y) = (x+z)^2 - y^2 = x^2 + 2xz + z^2 - y^2(x+y+z)(x−y+z)=((x+z)+y)((x+z)−y)=(x+z)2−y2=x2+2xz+z2−y2(x+y−z)(x−y−z)=(x−(z−y))(x+(y−z))=((x−z)+y)((x−z)−y)=(x−z)2−y2=x2−2xz+z2−y2(x+y-z)(x-y-z) = (x-(z-y))(x+(y-z)) = ((x-z)+y)((x-z)-y) = (x-z)^2 - y^2 = x^2 - 2xz + z^2 - y^2(x+y−z)(x−y−z)=(x−(z−y))(x+(y−z))=((x−z)+y)((x−z)−y)=(x−z)2−y2=x2−2xz+z2−y2したがって、(x+y+z)(x−y+z)(x+y−z)(x−y−z)=(x2+2xz+z2−y2)(x2−2xz+z2−y2)(x+y+z)(x-y+z)(x+y-z)(x-y-z) = (x^2 + 2xz + z^2 - y^2)(x^2 - 2xz + z^2 - y^2)(x+y+z)(x−y+z)(x+y−z)(x−y−z)=(x2+2xz+z2−y2)(x2−2xz+z2−y2)=((x2+z2−y2)+2xz)((x2+z2−y2)−2xz)= ((x^2 + z^2 - y^2) + 2xz)((x^2 + z^2 - y^2) - 2xz)=((x2+z2−y2)+2xz)((x2+z2−y2)−2xz)=(x2+z2−y2)2−(2xz)2= (x^2 + z^2 - y^2)^2 - (2xz)^2=(x2+z2−y2)2−(2xz)2=(x2+z2−y2)2−4x2z2= (x^2 + z^2 - y^2)^2 - 4x^2z^2=(x2+z2−y2)2−4x2z2=(x2+z2)2−2y2(x2+z2)+y4−4x2z2= (x^2 + z^2)^2 - 2y^2(x^2 + z^2) + y^4 - 4x^2z^2=(x2+z2)2−2y2(x2+z2)+y4−4x2z2=x4+2x2z2+z4−2x2y2−2y2z2+y4−4x2z2= x^4 + 2x^2z^2 + z^4 - 2x^2y^2 - 2y^2z^2 + y^4 - 4x^2z^2=x4+2x2z2+z4−2x2y2−2y2z2+y4−4x2z2=x4+y4+z4−2x2y2−2y2z2−2x2z2= x^4 + y^4 + z^4 - 2x^2y^2 - 2y^2z^2 - 2x^2z^2=x4+y4+z4−2x2y2−2y2z2−2x2z2=x4+y4+z4−2(x2y2+y2z2+z2x2)= x^4 + y^4 + z^4 - 2(x^2y^2 + y^2z^2 + z^2x^2)=x4+y4+z4−2(x2y2+y2z2+z2x2)3. 最終的な答え(1) 9x4−37x2+49x^4 - 37x^2 + 49x4−37x2+4(2) x4+y4+z4−2x2y2−2y2z2−2z2x2x^4 + y^4 + z^4 - 2x^2y^2 - 2y^2z^2 - 2z^2x^2x4+y4+z4−2x2y2−2y2z2−2z2x2