底面が1辺33cmの正方形の角材を、1つの丸太から切り出す場合、丸太の直径は少なくとも何cm以上である必要があるか。

幾何学正方形対角線ピタゴラスの定理近似計算
2025/6/29

1. 問題の内容

底面が1辺33cmの正方形の角材を、1つの丸太から切り出す場合、丸太の直径は少なくとも何cm以上である必要があるか。

2. 解き方の手順

正方形の角材を丸太から切り出すためには、丸太の直径は正方形の対角線以上である必要があります。
正方形の一辺の長さを aa とすると、対角線の長さ dd はピタゴラスの定理より、d=a2+a2=2a2=a2d = \sqrt{a^2 + a^2} = \sqrt{2a^2} = a\sqrt{2} となります。
問題では、正方形の一辺の長さが33cmなので、a=33a = 33 となります。
したがって、丸太の直径 dd33233\sqrt{2} cm以上である必要があります。
2\sqrt{2} の近似値は1.414なので、33×1.41446.66233 \times 1.414 \approx 46.662 となります。
丸太の直径は少なくとも何cm以上であるかという問題なので、小数点以下を切り上げて整数で答える必要があります。

3. 最終的な答え

47 cm

「幾何学」の関連問題

円 $x^2 + y^2 = 4$ と直線 $y = x + 3$ の共有点の個数を求める。

直線共有点点と直線の距離
2025/6/29

問題は、$\theta$の動径が第3象限にあり、$\cos{\theta} = -\frac{2}{3}$のとき、$\sin{\theta}$と$\tan{\theta}$の値を求める問題です。

三角関数三角比象限sincostan
2025/6/29

平面上に3点 $A(-1, 1)$, $B(4, 4)$, $C(7, 2)$ が与えられています。四角形 $ABCD$ が平行四辺形となるような点 $D$ の座標を求めなさい。

ベクトル座標平行四辺形
2025/6/29

三角形ABCにおいて、点Dは辺BC上にあります。 $\angle BDC = 70^\circ$, $\angle ACB = 80^\circ$ のとき、$\angle ABC$ の大きさを求めなさ...

三角形角度内角の和図形問題
2025/6/29

2直線 $y = -\sqrt{3}x$ と $y = x$ のなす鋭角 $\theta$ を求める問題です。

角度直線tan三角比
2025/6/29

問題5:$xy$平面において、点$(2, 1)$を通り、$x$軸と$y$軸に接する円の半径$r$の値を求める。 問題7:次の角を(1), (2)は弧度法で、(3), (4)は度数法で表す。 (1) $...

座標平面弧度法扇形三角比
2025/6/29

(1) $\sin^2 15^\circ + \sin^2 75^\circ$ の値を求めよ。 (2) $\sin 40^\circ + \cos 130^\circ + \tan 120^\circ...

三角関数三角比加法定理角度
2025/6/29

## 問題の回答

接線直線共有点判別式
2025/6/29

三角形ABCにおいて、点Dは辺BC上にある。角BDCは70度、角BCAは80度である。角ABCの大きさを求める。

三角形内角の和角度計算
2025/6/29

2点 $(2, -2)$ と $(6, 2)$ を直径の両端とする円の方程式を求めます。

円の方程式座標平面外接
2025/6/29