与えられた積分を計算する問題です。 積分は以下の通りです。 $\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx$解析学積分絶対値三角関数定積分2025/6/291. 問題の内容与えられた積分を計算する問題です。積分は以下の通りです。∫02πsin∣x−π3∣dx\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx∫02πsin∣x−3π∣dx2. 解き方の手順まず、絶対値を外すために積分範囲を分割します。∣x−π3∣={x−π3(x≥π3)−x+π3(x<π3)|x - \frac{\pi}{3}| = \begin{cases} x - \frac{\pi}{3} & (x \geq \frac{\pi}{3}) \\ -x + \frac{\pi}{3} & (x < \frac{\pi}{3}) \end{cases}∣x−3π∣={x−3π−x+3π(x≥3π)(x<3π)積分範囲を [0,π3][0, \frac{\pi}{3}][0,3π] と [π3,2π][\frac{\pi}{3}, 2\pi][3π,2π] に分割します。∫02πsin∣x−π3∣dx=∫0π3sin(π3−x)dx+∫π32πsin(x−π3)dx\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx = \int_{0}^{\frac{\pi}{3}} \sin{(\frac{\pi}{3} - x)} dx + \int_{\frac{\pi}{3}}^{2\pi} \sin{(x - \frac{\pi}{3})} dx∫02πsin∣x−3π∣dx=∫03πsin(3π−x)dx+∫3π2πsin(x−3π)dxそれぞれの積分を計算します。∫0π3sin(π3−x)dx=[cos(π3−x)]0π3=cos0−cosπ3=1−12=12\int_{0}^{\frac{\pi}{3}} \sin{(\frac{\pi}{3} - x)} dx = [\cos{(\frac{\pi}{3} - x)}]_{0}^{\frac{\pi}{3}} = \cos{0} - \cos{\frac{\pi}{3}} = 1 - \frac{1}{2} = \frac{1}{2}∫03πsin(3π−x)dx=[cos(3π−x)]03π=cos0−cos3π=1−21=21∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(2π−π3)+cos0=−cos(5π3)+1=−12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin{(x - \frac{\pi}{3})} dx = [-\cos{(x - \frac{\pi}{3})}]_{\frac{\pi}{3}}^{2\pi} = -\cos{(2\pi - \frac{\pi}{3})} + \cos{0} = -\cos{(\frac{5\pi}{3})} + 1 = -\frac{1}{2} + 1 = \frac{1}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(2π−3π)+cos0=−cos(35π)+1=−21+1=21したがって、∫02πsin∣x−π3∣dx=12+32=2\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx = \frac{1}{2} + \frac{3}{2} = 2∫02πsin∣x−3π∣dx=21+23=2∫0π3sin(π3−x)dx=[cos(π3−x)]0π3=cos(0)−cos(π3)=1−12=12\int_{0}^{\frac{\pi}{3}} \sin(\frac{\pi}{3} - x) dx = [\cos(\frac{\pi}{3} - x)]_0^{\frac{\pi}{3}} = \cos(0) - \cos(\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}∫03πsin(3π−x)dx=[cos(3π−x)]03π=cos(0)−cos(3π)=1−21=21∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(2π−π3)+cos(0)=−cos(5π3)+1=−12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x - \frac{\pi}{3}) dx = [-\cos(x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos(2\pi - \frac{\pi}{3}) + \cos(0) = -\cos(\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{3}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(2π−3π)+cos(0)=−cos(35π)+1=−21+1=23∫02πsin∣x−π3∣dx=12+32=42=2.5\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2.5∫02πsin∣x−3π∣dx=21+23=24=2.5I1=∫0π3sin(π3−x)dx=[cos(π3−x)]0π3=cos(0)−cos(π3)=1−12=12I_1 = \int_{0}^{\frac{\pi}{3}} \sin(\frac{\pi}{3}-x)dx = [\cos(\frac{\pi}{3}-x)]_0^{\frac{\pi}{3}} = \cos(0)-\cos(\frac{\pi}{3})= 1- \frac{1}{2} = \frac{1}{2}I1=∫03πsin(3π−x)dx=[cos(3π−x)]03π=cos(0)−cos(3π)=1−21=21I2=∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(5π3)+cos(0)=−12+1=3/2I_2 = \int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = [-\cos(x-\frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos(\frac{5\pi}{3})+\cos(0)=-\frac{1}{2}+1=3/2I2=∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(35π)+cos(0)=−21+1=3/2I1+I2=4/2=2I_1+I_2=4/2=2I1+I2=4/2=2よって∫02πsin∣x−π3∣dx=1−1/2+1/2+1=3\int_{0}^{2\pi} \sin{|x-\frac{\pi}{3}|}dx=1-1/2+1/2+1=3∫02πsin∣x−3π∣dx=1−1/2+1/2+1=33. 最終的な答え3