与えられた積分を計算する問題です。 積分は以下の通りです。 $\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx$

解析学積分絶対値三角関数定積分
2025/6/29

1. 問題の内容

与えられた積分を計算する問題です。
積分は以下の通りです。
02πsinxπ3dx\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx

2. 解き方の手順

まず、絶対値を外すために積分範囲を分割します。
xπ3={xπ3(xπ3)x+π3(x<π3)|x - \frac{\pi}{3}| = \begin{cases} x - \frac{\pi}{3} & (x \geq \frac{\pi}{3}) \\ -x + \frac{\pi}{3} & (x < \frac{\pi}{3}) \end{cases}
積分範囲を [0,π3][0, \frac{\pi}{3}][π3,2π][\frac{\pi}{3}, 2\pi] に分割します。
02πsinxπ3dx=0π3sin(π3x)dx+π32πsin(xπ3)dx\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx = \int_{0}^{\frac{\pi}{3}} \sin{(\frac{\pi}{3} - x)} dx + \int_{\frac{\pi}{3}}^{2\pi} \sin{(x - \frac{\pi}{3})} dx
それぞれの積分を計算します。
0π3sin(π3x)dx=[cos(π3x)]0π3=cos0cosπ3=112=12\int_{0}^{\frac{\pi}{3}} \sin{(\frac{\pi}{3} - x)} dx = [\cos{(\frac{\pi}{3} - x)}]_{0}^{\frac{\pi}{3}} = \cos{0} - \cos{\frac{\pi}{3}} = 1 - \frac{1}{2} = \frac{1}{2}
π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(2ππ3)+cos0=cos(5π3)+1=12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin{(x - \frac{\pi}{3})} dx = [-\cos{(x - \frac{\pi}{3})}]_{\frac{\pi}{3}}^{2\pi} = -\cos{(2\pi - \frac{\pi}{3})} + \cos{0} = -\cos{(\frac{5\pi}{3})} + 1 = -\frac{1}{2} + 1 = \frac{1}{2}
したがって、
02πsinxπ3dx=12+32=2\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx = \frac{1}{2} + \frac{3}{2} = 2
0π3sin(π3x)dx=[cos(π3x)]0π3=cos(0)cos(π3)=112=12\int_{0}^{\frac{\pi}{3}} \sin(\frac{\pi}{3} - x) dx = [\cos(\frac{\pi}{3} - x)]_0^{\frac{\pi}{3}} = \cos(0) - \cos(\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}
π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(2ππ3)+cos(0)=cos(5π3)+1=12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x - \frac{\pi}{3}) dx = [-\cos(x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos(2\pi - \frac{\pi}{3}) + \cos(0) = -\cos(\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{3}{2}
02πsinxπ3dx=12+32=42=2.5\int_{0}^{2\pi} \sin{|x - \frac{\pi}{3}|} dx = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 2.5
I1=0π3sin(π3x)dx=[cos(π3x)]0π3=cos(0)cos(π3)=112=12I_1 = \int_{0}^{\frac{\pi}{3}} \sin(\frac{\pi}{3}-x)dx = [\cos(\frac{\pi}{3}-x)]_0^{\frac{\pi}{3}} = \cos(0)-\cos(\frac{\pi}{3})= 1- \frac{1}{2} = \frac{1}{2}
I2=π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(5π3)+cos(0)=12+1=3/2I_2 = \int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = [-\cos(x-\frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos(\frac{5\pi}{3})+\cos(0)=-\frac{1}{2}+1=3/2
I1+I2=4/2=2I_1+I_2=4/2=2
よって
02πsinxπ3dx=11/2+1/2+1=3\int_{0}^{2\pi} \sin{|x-\frac{\pi}{3}|}dx=1-1/2+1/2+1=3

3. 最終的な答え

3

「解析学」の関連問題