次の定積分を計算します。 $\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx$

解析学定積分絶対値三角関数
2025/6/29

1. 問題の内容

次の定積分を計算します。
02πsinxπ3dx\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx

2. 解き方の手順

まず、xπ3|x - \frac{\pi}{3}| の絶対値を外します。
xπ30x - \frac{\pi}{3} \geq 0 のとき、xπ3x \geq \frac{\pi}{3} であり、xπ3=xπ3|x - \frac{\pi}{3}| = x - \frac{\pi}{3} となります。
xπ3<0x - \frac{\pi}{3} < 0 のとき、x<π3x < \frac{\pi}{3} であり、xπ3=(xπ3)=π3x|x - \frac{\pi}{3}| = -(x - \frac{\pi}{3}) = \frac{\pi}{3} - x となります。
したがって、積分を2つの区間に分割します。
02πsinxπ3dx=0π3sin(π3x)dx+π32πsin(xπ3)dx\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx + \int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx
それぞれの積分を計算します。
0π3sin(π3x)dx=[cos(π3x)]0π3=cos(0)cos(π3)=112=12\int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx = [\cos (\frac{\pi}{3} - x)]_{0}^{\frac{\pi}{3}} = \cos (0) - \cos (\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}
π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(2ππ3)+cos(0)=cos(5π3)+1=12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx = [-\cos (x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos (2\pi - \frac{\pi}{3}) + \cos (0) = -\cos (\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{1}{2}
したがって、
02πsinxπ3dx=12+32=42=3\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 3
π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(2ππ3)+cos(0)=cos(5π3)+1=12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx = [-\cos (x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos (2\pi - \frac{\pi}{3}) + \cos (0) = -\cos (\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{3}{2}
よって、
02πsinxπ3dx=12+32=2\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \frac{1}{2} + \frac{3}{2} = 2
それぞれの積分を計算します。
0π3sin(π3x)dx=[cos(π3x)]0π3=cos(0)cos(π3)=112=12\int_{0}^{\frac{\pi}{3}} \sin(\frac{\pi}{3}-x)dx = \left[\cos(\frac{\pi}{3}-x)\right]_0^{\frac{\pi}{3}} = \cos(0) - \cos(\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}
π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(5π3)+cos(0)=12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = \left[-\cos(x-\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{2\pi} = -\cos(\frac{5\pi}{3}) + \cos(0) = -\frac{1}{2} + 1 = \frac{1}{2}
絶対値を外したところを間違えていた。
π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(5π3)+cos(0)=12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = \left[-\cos(x-\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{2\pi} = -\cos(\frac{5\pi}{3}) + \cos(0) = -\frac{1}{2} + 1 = \frac{3}{2}
π32πsin(xπ3)dx=[cos(xπ3)]π32π=cos(2ππ3)+cos(π3π3)=cos(5π3)+1=12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = \left[-\cos(x-\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{2\pi} = -\cos(2\pi-\frac{\pi}{3}) + \cos(\frac{\pi}{3}-\frac{\pi}{3})= -\cos(\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{3}{2}
0π3sin(π3x)dx=[cos(π3x)]0π3=cos(0)cos(π3)=112=12\int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx = [\cos (\frac{\pi}{3} - x)]_{0}^{\frac{\pi}{3}} = \cos (0) - \cos (\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}
π32πsin(xπ3)dx=[cos(xπ3)]π32π=[cos(5π3)+cos(0)]=12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x - \frac{\pi}{3}) dx = [-\cos (x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = [-\cos (\frac{5\pi}{3}) + \cos(0)] = -\frac{1}{2} + 1 = \frac{3}{2}.
したがって、積分は
12+32=2\frac{1}{2} + \frac{3}{2} = 2

3. 最終的な答え

2

「解析学」の関連問題