次の定積分を計算します。 $\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx$解析学定積分絶対値三角関数2025/6/291. 問題の内容次の定積分を計算します。∫02πsin∣x−π3∣dx\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx∫02πsin∣x−3π∣dx2. 解き方の手順まず、∣x−π3∣|x - \frac{\pi}{3}|∣x−3π∣ の絶対値を外します。x−π3≥0x - \frac{\pi}{3} \geq 0x−3π≥0 のとき、x≥π3x \geq \frac{\pi}{3}x≥3π であり、∣x−π3∣=x−π3|x - \frac{\pi}{3}| = x - \frac{\pi}{3}∣x−3π∣=x−3π となります。x−π3<0x - \frac{\pi}{3} < 0x−3π<0 のとき、x<π3x < \frac{\pi}{3}x<3π であり、∣x−π3∣=−(x−π3)=π3−x|x - \frac{\pi}{3}| = -(x - \frac{\pi}{3}) = \frac{\pi}{3} - x∣x−3π∣=−(x−3π)=3π−x となります。したがって、積分を2つの区間に分割します。∫02πsin∣x−π3∣dx=∫0π3sin(π3−x)dx+∫π32πsin(x−π3)dx\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx + \int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx∫02πsin∣x−3π∣dx=∫03πsin(3π−x)dx+∫3π2πsin(x−3π)dxそれぞれの積分を計算します。∫0π3sin(π3−x)dx=[cos(π3−x)]0π3=cos(0)−cos(π3)=1−12=12\int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx = [\cos (\frac{\pi}{3} - x)]_{0}^{\frac{\pi}{3}} = \cos (0) - \cos (\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}∫03πsin(3π−x)dx=[cos(3π−x)]03π=cos(0)−cos(3π)=1−21=21∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(2π−π3)+cos(0)=−cos(5π3)+1=−12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx = [-\cos (x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos (2\pi - \frac{\pi}{3}) + \cos (0) = -\cos (\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{1}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(2π−3π)+cos(0)=−cos(35π)+1=−21+1=21したがって、∫02πsin∣x−π3∣dx=12+32=42=3\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \frac{1}{2} + \frac{3}{2} = \frac{4}{2} = 3∫02πsin∣x−3π∣dx=21+23=24=3∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(2π−π3)+cos(0)=−cos(5π3)+1=−12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin (x - \frac{\pi}{3}) dx = [-\cos (x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = -\cos (2\pi - \frac{\pi}{3}) + \cos (0) = -\cos (\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{3}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(2π−3π)+cos(0)=−cos(35π)+1=−21+1=23よって、∫02πsin∣x−π3∣dx=12+32=2\int_{0}^{2\pi} \sin |x - \frac{\pi}{3}| dx = \frac{1}{2} + \frac{3}{2} = 2∫02πsin∣x−3π∣dx=21+23=2それぞれの積分を計算します。∫0π3sin(π3−x)dx=[cos(π3−x)]0π3=cos(0)−cos(π3)=1−12=12\int_{0}^{\frac{\pi}{3}} \sin(\frac{\pi}{3}-x)dx = \left[\cos(\frac{\pi}{3}-x)\right]_0^{\frac{\pi}{3}} = \cos(0) - \cos(\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}∫03πsin(3π−x)dx=[cos(3π−x)]03π=cos(0)−cos(3π)=1−21=21∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(5π3)+cos(0)=−12+1=12\int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = \left[-\cos(x-\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{2\pi} = -\cos(\frac{5\pi}{3}) + \cos(0) = -\frac{1}{2} + 1 = \frac{1}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(35π)+cos(0)=−21+1=21絶対値を外したところを間違えていた。∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(5π3)+cos(0)=−12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = \left[-\cos(x-\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{2\pi} = -\cos(\frac{5\pi}{3}) + \cos(0) = -\frac{1}{2} + 1 = \frac{3}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(35π)+cos(0)=−21+1=23∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=−cos(2π−π3)+cos(π3−π3)=−cos(5π3)+1=−12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x-\frac{\pi}{3})dx = \left[-\cos(x-\frac{\pi}{3})\right]_{\frac{\pi}{3}}^{2\pi} = -\cos(2\pi-\frac{\pi}{3}) + \cos(\frac{\pi}{3}-\frac{\pi}{3})= -\cos(\frac{5\pi}{3}) + 1 = -\frac{1}{2} + 1 = \frac{3}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=−cos(2π−3π)+cos(3π−3π)=−cos(35π)+1=−21+1=23∫0π3sin(π3−x)dx=[cos(π3−x)]0π3=cos(0)−cos(π3)=1−12=12\int_{0}^{\frac{\pi}{3}} \sin (\frac{\pi}{3} - x) dx = [\cos (\frac{\pi}{3} - x)]_{0}^{\frac{\pi}{3}} = \cos (0) - \cos (\frac{\pi}{3}) = 1 - \frac{1}{2} = \frac{1}{2}∫03πsin(3π−x)dx=[cos(3π−x)]03π=cos(0)−cos(3π)=1−21=21∫π32πsin(x−π3)dx=[−cos(x−π3)]π32π=[−cos(5π3)+cos(0)]=−12+1=32\int_{\frac{\pi}{3}}^{2\pi} \sin(x - \frac{\pi}{3}) dx = [-\cos (x - \frac{\pi}{3})]_{\frac{\pi}{3}}^{2\pi} = [-\cos (\frac{5\pi}{3}) + \cos(0)] = -\frac{1}{2} + 1 = \frac{3}{2}∫3π2πsin(x−3π)dx=[−cos(x−3π)]3π2π=[−cos(35π)+cos(0)]=−21+1=23.したがって、積分は12+32=2\frac{1}{2} + \frac{3}{2} = 221+23=23. 最終的な答え2