$0 < n^{\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}} < 1$ を示す問題です。解析学不等式指数極限2025/6/291. 問題の内容0<n1n+1−1n<10 < n^{\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}} < 10<nn+11−n1<1 を示す問題です。2. 解き方の手順まず、n>1n > 1n>1 を仮定します。n1n+1−1nn^{\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}}nn+11−n1 の指数部分 1n+1−1n\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}n+11−n1 について考えます。1n+1−1n=n−n+1nn+1=(n−n+1)(n+n+1)nn+1(n+n+1)=n−(n+1)nn+1(n+n+1)=−1nn+1(n+n+1)\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}} = \frac{\sqrt{n} - \sqrt{n+1}}{\sqrt{n}\sqrt{n+1}} = \frac{(\sqrt{n} - \sqrt{n+1})(\sqrt{n} + \sqrt{n+1})}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})} = \frac{n - (n+1)}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})} = \frac{-1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})}n+11−n1=nn+1n−n+1=nn+1(n+n+1)(n−n+1)(n+n+1)=nn+1(n+n+1)n−(n+1)=nn+1(n+n+1)−1したがって、1n+1−1n=−1nn+1(n+n+1)\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}} = \frac{-1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})}n+11−n1=nn+1(n+n+1)−1ここで、nn+1(n+n+1)>0\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1}) > 0nn+1(n+n+1)>0 なので、1n+1−1n<0\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}} < 0n+11−n1<0 となります。したがって、n1n+1−1n=n−1nn+1(n+n+1)=1n1nn+1(n+n+1)n^{\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}} = n^{\frac{-1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})}} = \frac{1}{n^{\frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})}}}nn+11−n1=nnn+1(n+n+1)−1=nnn+1(n+n+1)11 となります。1nn+1(n+n+1)>0\frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})} > 0nn+1(n+n+1)1>0 なので、n1nn+1(n+n+1)>1n^{\frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})}} > 1nnn+1(n+n+1)1>1 となります。よって、n1n+1−1n=1n1nn+1(n+n+1)<1n^{\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}} = \frac{1}{n^{\frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})}}} < 1nn+11−n1=nnn+1(n+n+1)11<1 となります。また、1n1nn+1(n+n+1)>0\frac{1}{n^{\frac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n} + \sqrt{n+1})}}} > 0nnn+1(n+n+1)11>0 なので、0<n1n+1−1n<10 < n^{\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}} < 10<nn+11−n1<1 が示されました。3. 最終的な答え0<n1n+1−1n<10 < n^{\frac{1}{\sqrt{n+1}} - \frac{1}{\sqrt{n}}} < 10<nn+11−n1<1