$u=u(x,y)$ であり、$x=r\cos\theta$, $y=r\sin\theta$ であるとき、以下の問いに答える。 (1) $\frac{\partial u}{\partial r}$、$\frac{\partial u}{\partial \theta}$ を $\frac{\partial u}{\partial x}$、$\frac{\partial u}{\partial y}$ で表せ。 (2) $\frac{\partial u}{\partial x}$、$\frac{\partial u}{\partial y}$ を $\frac{\partial u}{\partial r}$、$\frac{\partial u}{\partial \theta}$ で表せ。 (3) $(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2$ と $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ を $\frac{\partial u}{\partial r}$、$\frac{\partial u}{\partial \theta}$ で表せ。

解析学偏微分合成関数の微分変数変換ラプラシアン
2025/7/4

1. 問題の内容

u=u(x,y)u=u(x,y) であり、x=rcosθx=r\cos\theta, y=rsinθy=r\sin\theta であるとき、以下の問いに答える。
(1) ur\frac{\partial u}{\partial r}uθ\frac{\partial u}{\partial \theta}ux\frac{\partial u}{\partial x}uy\frac{\partial u}{\partial y} で表せ。
(2) ux\frac{\partial u}{\partial x}uy\frac{\partial u}{\partial y}ur\frac{\partial u}{\partial r}uθ\frac{\partial u}{\partial \theta} で表せ。
(3) (ux)2+(uy)2(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^22ux2+2uy2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}ur\frac{\partial u}{\partial r}uθ\frac{\partial u}{\partial \theta} で表せ。

2. 解き方の手順

(1)
合成関数の微分より、
ur=uxxr+uyyr=uxcosθ+uysinθ\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial r} = \frac{\partial u}{\partial x}\cos\theta + \frac{\partial u}{\partial y}\sin\theta
uθ=uxxθ+uyyθ=ux(rsinθ)+uy(rcosθ)\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \theta} = \frac{\partial u}{\partial x}(-r\sin\theta) + \frac{\partial u}{\partial y}(r\cos\theta)
(2)
(1)より
ur=cosθux+sinθuy\frac{\partial u}{\partial r} = \cos\theta\frac{\partial u}{\partial x} + \sin\theta\frac{\partial u}{\partial y}
uθ=rsinθux+rcosθuy\frac{\partial u}{\partial \theta} = -r\sin\theta\frac{\partial u}{\partial x} + r\cos\theta\frac{\partial u}{\partial y}
この連立方程式を ux\frac{\partial u}{\partial x}uy\frac{\partial u}{\partial y} について解く。
cosθ×(2)+rsinθ×(1)\cos\theta \times (2式) + r\sin\theta \times (1式) より
cosθuθ+rsinθur=cosθ(rsinθux+rcosθuy)+rsinθ(cosθux+sinθuy)\cos\theta \frac{\partial u}{\partial \theta} + r\sin\theta \frac{\partial u}{\partial r} = \cos\theta(-r\sin\theta\frac{\partial u}{\partial x} + r\cos\theta\frac{\partial u}{\partial y}) + r\sin\theta (\cos\theta\frac{\partial u}{\partial x} + \sin\theta\frac{\partial u}{\partial y})
cosθuθ+rsinθur=(rsinθcosθ+rsinθcosθ)ux+(rcos2θ+rsin2θ)uy\cos\theta \frac{\partial u}{\partial \theta} + r\sin\theta \frac{\partial u}{\partial r} = (-r\sin\theta\cos\theta + r\sin\theta\cos\theta)\frac{\partial u}{\partial x} + (r\cos^2\theta + r\sin^2\theta)\frac{\partial u}{\partial y}
cosθuθ+rsinθur=ruy\cos\theta \frac{\partial u}{\partial \theta} + r\sin\theta \frac{\partial u}{\partial r} = r\frac{\partial u}{\partial y}
uy=sinθruθ+cosθur\frac{\partial u}{\partial y} = \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta} + \cos\theta \frac{\partial u}{\partial r}
sinθ×(2)rcosθ×(1)\sin\theta \times (2式) - r\cos\theta \times (1式) より
sinθuθrcosθur=sinθ(rsinθux+rcosθuy)rcosθ(cosθux+sinθuy)\sin\theta \frac{\partial u}{\partial \theta} - r\cos\theta \frac{\partial u}{\partial r} = \sin\theta(-r\sin\theta\frac{\partial u}{\partial x} + r\cos\theta\frac{\partial u}{\partial y}) - r\cos\theta (\cos\theta\frac{\partial u}{\partial x} + \sin\theta\frac{\partial u}{\partial y})
sinθuθrcosθur=(rsin2θrcos2θ)ux+(rsinθcosθrsinθcosθ)uy\sin\theta \frac{\partial u}{\partial \theta} - r\cos\theta \frac{\partial u}{\partial r} = (-r\sin^2\theta - r\cos^2\theta)\frac{\partial u}{\partial x} + (r\sin\theta\cos\theta - r\sin\theta\cos\theta)\frac{\partial u}{\partial y}
sinθuθrcosθur=rux\sin\theta \frac{\partial u}{\partial \theta} - r\cos\theta \frac{\partial u}{\partial r} = -r\frac{\partial u}{\partial x}
ux=cosθrursinθruθ\frac{\partial u}{\partial x} = \frac{\cos\theta}{r} \frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}
(3)
(ux)2+(uy)2=(cosθrursinθruθ)2+(sinθruθ+cosθur)2(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2 = (\frac{\cos\theta}{r} \frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta})^2 + (\frac{\sin\theta}{r} \frac{\partial u}{\partial \theta} + \cos\theta \frac{\partial u}{\partial r})^2
=cos2θr2(ur)22cosθsinθr2uruθ+sin2θr2(uθ)2+sin2θr2(uθ)2+2sinθcosθr2uruθ+cos2θ(ur)2= \frac{\cos^2\theta}{r^2}(\frac{\partial u}{\partial r})^2 - 2\frac{\cos\theta\sin\theta}{r^2}\frac{\partial u}{\partial r}\frac{\partial u}{\partial \theta} + \frac{\sin^2\theta}{r^2}(\frac{\partial u}{\partial \theta})^2 + \frac{\sin^2\theta}{r^2} (\frac{\partial u}{\partial \theta})^2 + 2\frac{\sin\theta\cos\theta}{r^2} \frac{\partial u}{\partial r}\frac{\partial u}{\partial \theta} + \cos^2\theta (\frac{\partial u}{\partial r})^2
=1r2(uθ)2+(ur)2= \frac{1}{r^2} (\frac{\partial u}{\partial \theta})^2 + (\frac{\partial u}{\partial r})^2
2ux2+2uy2=x(ux)+y(uy)\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) + \frac{\partial}{\partial y}(\frac{\partial u}{\partial y})
=x(cosθrursinθruθ)+y(sinθruθ+cosθur)= \frac{\partial}{\partial x}(\frac{\cos\theta}{r} \frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}) + \frac{\partial}{\partial y}(\frac{\sin\theta}{r} \frac{\partial u}{\partial \theta} + \cos\theta \frac{\partial u}{\partial r})
=(rxr+θxθ)(cosθrursinθruθ)+(ryr+θyθ)(sinθruθ+cosθur)= (\frac{\partial r}{\partial x}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x}\frac{\partial}{\partial \theta})(\frac{\cos\theta}{r} \frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}) + (\frac{\partial r}{\partial y}\frac{\partial}{\partial r} + \frac{\partial \theta}{\partial y}\frac{\partial}{\partial \theta})(\frac{\sin\theta}{r} \frac{\partial u}{\partial \theta} + \cos\theta \frac{\partial u}{\partial r})
rx=xr=cosθ\frac{\partial r}{\partial x} = \frac{x}{r} = \cos\theta, θx=yr2=sinθr\frac{\partial \theta}{\partial x} = -\frac{y}{r^2} = -\frac{\sin\theta}{r}
ry=yr=sinθ\frac{\partial r}{\partial y} = \frac{y}{r} = \sin\theta, θy=xr2=cosθr\frac{\partial \theta}{\partial y} = \frac{x}{r^2} = \frac{\cos\theta}{r}
=(cosθrsinθrθ)(cosθrursinθruθ)+(sinθr+cosθrθ)(sinθruθ+cosθur)= (\cos\theta \frac{\partial}{\partial r} - \frac{\sin\theta}{r}\frac{\partial}{\partial \theta})(\frac{\cos\theta}{r} \frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}) + (\sin\theta \frac{\partial}{\partial r} + \frac{\cos\theta}{r}\frac{\partial}{\partial \theta})(\frac{\sin\theta}{r} \frac{\partial u}{\partial \theta} + \cos\theta \frac{\partial u}{\partial r})
=cosθ(cosθr2ur+cosθr2ur2sinθr(uθ+2urθ))sinθr(θ)+(sinθr+12)= \cos\theta(\frac{-\cos\theta}{r^2}\frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial^2 u}{\partial r^2} - \frac{\sin\theta}{r}(-\frac{\partial u}{\partial \theta} + \frac{\partial^2 u}{\partial r \partial \theta})) - \frac{\sin\theta}{r} (\frac{\partial}{\partial \theta}) + (\frac{\sin\theta}{r} + \frac{1}{2})
=2ur2+1rur+1r22uθ2= \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}

3. 最終的な答え

(1)
ur=cosθux+sinθuy\frac{\partial u}{\partial r} = \cos\theta\frac{\partial u}{\partial x} + \sin\theta\frac{\partial u}{\partial y}
uθ=rsinθux+rcosθuy\frac{\partial u}{\partial \theta} = -r\sin\theta\frac{\partial u}{\partial x} + r\cos\theta\frac{\partial u}{\partial y}
(2)
ux=cosθursinθruθ\frac{\partial u}{\partial x} = \cos\theta \frac{\partial u}{\partial r} - \frac{\sin\theta}{r} \frac{\partial u}{\partial \theta}
uy=sinθur+cosθruθ\frac{\partial u}{\partial y} = \sin\theta \frac{\partial u}{\partial r} + \frac{\cos\theta}{r} \frac{\partial u}{\partial \theta}
(3)
(ux)2+(uy)2=(ur)2+1r2(uθ)2(\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2 = (\frac{\partial u}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial u}{\partial \theta})^2
2ux2+2uy2=2ur2+1rur+1r22uθ2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}

「解析学」の関連問題

与えられた10個の極限の計算問題です。

極限関数の極限有理関数平方根絶対値
2025/7/4

不定積分 $\int xe^{x^2} dx$ を計算し、与えられた形式で答えを埋める。

積分不定積分置換積分指数関数
2025/7/4

不定積分 $\int \frac{1}{4 + x^2} dx$ を求め、その結果を $\frac{ア}{イ} \tan^{-1} \frac{ウ x}{エ} + C$ の形で表す。

積分不定積分逆正接関数公式
2025/7/4

$\int (a^x + b^{2x}) dx$ を計算し、与えられた形式で答えを埋めなさい。

積分指数関数置換積分
2025/7/4

$\frac{d}{dx} \left( \int_x^{2x} \cos^2 t dt \right) = (\text{ア}) \cos^2 2x + (\text{イ}) \cos^2 x$ の...

微積分学積分微分微積分学の基本定理
2025/7/4

$u=u(x, y)$ であり、$x=r\cos\theta$, $y=r\sin\theta$ のとき、以下の問いに答える。 (1) $\frac{\partial u}{\partial r}, ...

偏微分連鎖律座標変換ラプラシアン
2025/7/4

$u=u(x, y)$, $x=r\cos\theta$, $y=r\sin\theta$ のとき、以下の問いに答えます。 (1) $\frac{\partial u}{\partial r}$, $...

偏微分連鎖律座標変換ラプラシアン
2025/7/4

与えられた関数に対して、偏微分や全微分を計算する問題です。具体的には、以下の4つの問題があります。 (1) $z = f(ax+by)$ ($a, b$は定数) のとき、$b\frac{\partia...

偏微分全微分合成関数陰関数
2025/7/4

与えられた問題は4つの小問から構成されています。 (1) $z = f(ax + by)$ (a, b は定数)のとき、$b \frac{\partial z}{\partial x} = a \fr...

偏微分連鎖律陰関数合成関数
2025/7/4

問題4の(1)と(2)の偏導関数を求めます。 (1) $z = x^2y + xy^2$のとき、$\frac{\partial z}{\partial x}$と$\frac{\partial z}{\...

偏導関数多変数関数
2025/7/4