$u=u(x, y)$ であり、$x=r\cos\theta$, $y=r\sin\theta$ のとき、以下の問いに答える。 (1) $\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta}$ を $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ で表す。 (2) $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ を $\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta}$ で表す。 (3) $(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2$ と $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ を $\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta}$ で表す。

解析学偏微分連鎖律座標変換ラプラシアン
2025/7/4

1. 問題の内容

u=u(x,y)u=u(x, y) であり、x=rcosθx=r\cos\theta, y=rsinθy=r\sin\theta のとき、以下の問いに答える。
(1) ur,uθ\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta}ux,uy\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} で表す。
(2) ux,uy\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}ur,uθ\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta} で表す。
(3) (ux)2+(uy)2(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^22ux2+2uy2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}ur,uθ\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta} で表す。

2. 解き方の手順

(1)
偏微分の連鎖律より、
ur=uxxr+uyyr\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial r}
uθ=uxxθ+uyyθ\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial \theta}
ここで、
xr=cosθ\frac{\partial x}{\partial r} = \cos\theta
yr=sinθ\frac{\partial y}{\partial r} = \sin\theta
xθ=rsinθ\frac{\partial x}{\partial \theta} = -r\sin\theta
yθ=rcosθ\frac{\partial y}{\partial \theta} = r\cos\theta
したがって、
ur=uxcosθ+uysinθ\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\cos\theta + \frac{\partial u}{\partial y}\sin\theta
uθ=ux(rsinθ)+uy(rcosθ)\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x}(-r\sin\theta) + \frac{\partial u}{\partial y}(r\cos\theta)
(2)
(1) の結果より、
ur=uxcosθ+uysinθ\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\cos\theta + \frac{\partial u}{\partial y}\sin\theta
uθ=rsinθux+rcosθuy\frac{\partial u}{\partial \theta} = -r\sin\theta\frac{\partial u}{\partial x} + r\cos\theta\frac{\partial u}{\partial y}
これらを ux\frac{\partial u}{\partial x}uy\frac{\partial u}{\partial y} について解く。
ux=A,uy=B\frac{\partial u}{\partial x} = A, \frac{\partial u}{\partial y} = B とおく。
Acosθ+Bsinθ=urA\cos\theta + B\sin\theta = \frac{\partial u}{\partial r}
Arsinθ+Brcosθ=uθ-Ar\sin\theta + Br\cos\theta = \frac{\partial u}{\partial \theta}
最初の式に rsinθr\sin\theta をかけ、2番目の式に cosθ\cos\theta をかけると
Arsinθcosθ+Brsin2θ=rsinθurAr\sin\theta\cos\theta + Br\sin^2\theta = r\sin\theta\frac{\partial u}{\partial r}
Arsinθcosθ+Brcos2θ=cosθuθ-Ar\sin\theta\cos\theta + Br\cos^2\theta = \cos\theta\frac{\partial u}{\partial \theta}
足し合わせると、
Br=rsinθur+cosθuθBr = r\sin\theta\frac{\partial u}{\partial r} + \cos\theta\frac{\partial u}{\partial \theta}
B=sinθur+cosθruθB = \sin\theta\frac{\partial u}{\partial r} + \frac{\cos\theta}{r}\frac{\partial u}{\partial \theta}
同様に、最初の式に rcosθr\cos\theta をかけ、2番目の式に sinθ\sin\theta をかけると
Arcos2θ+Brsinθcosθ=rcosθurAr\cos^2\theta + Br\sin\theta\cos\theta = r\cos\theta\frac{\partial u}{\partial r}
Arsin2θ+Brsinθcosθ=sinθuθ-Ar\sin^2\theta + Br\sin\theta\cos\theta = \sin\theta\frac{\partial u}{\partial \theta}
引き算すると、
Ar=rcosθursinθuθAr = r\cos\theta\frac{\partial u}{\partial r} - \sin\theta\frac{\partial u}{\partial \theta}
A=cosθursinθruθA = \cos\theta\frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}
したがって、
ux=cosθursinθruθ\frac{\partial u}{\partial x} = \cos\theta\frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}
uy=sinθur+cosθruθ\frac{\partial u}{\partial y} = \sin\theta\frac{\partial u}{\partial r} + \frac{\cos\theta}{r}\frac{\partial u}{\partial \theta}
(3)
(ux)2+(uy)2=(cosθursinθruθ)2+(sinθur+cosθruθ)2(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 = (\cos\theta\frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta})^2 + (\sin\theta\frac{\partial u}{\partial r} + \frac{\cos\theta}{r}\frac{\partial u}{\partial \theta})^2
=(cos2θ(ur)22sinθcosθruruθ+sin2θr2(uθ)2)+(sin2θ(ur)2+2sinθcosθruruθ+cos2θr2(uθ)2)= (\cos^2\theta (\frac{\partial u}{\partial r})^2 - 2\frac{\sin\theta\cos\theta}{r}\frac{\partial u}{\partial r}\frac{\partial u}{\partial \theta} + \frac{\sin^2\theta}{r^2} (\frac{\partial u}{\partial \theta})^2) + (\sin^2\theta (\frac{\partial u}{\partial r})^2 + 2\frac{\sin\theta\cos\theta}{r}\frac{\partial u}{\partial r}\frac{\partial u}{\partial \theta} + \frac{\cos^2\theta}{r^2} (\frac{\partial u}{\partial \theta})^2)
=(cos2θ+sin2θ)(ur)2+(sin2θr2+cos2θr2)(uθ)2= (\cos^2\theta + \sin^2\theta)(\frac{\partial u}{\partial r})^2 + (\frac{\sin^2\theta}{r^2} + \frac{\cos^2\theta}{r^2})(\frac{\partial u}{\partial \theta})^2
=(ur)2+1r2(uθ)2= (\frac{\partial u}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial u}{\partial \theta})^2
2ux2+2uy2=x(ux)+y(uy)\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial x}(\frac{\partial u}{\partial x}) + \frac{\partial}{\partial y}(\frac{\partial u}{\partial y})
=x(cosθursinθruθ)+y(sinθur+cosθruθ)= \frac{\partial}{\partial x}(\cos\theta\frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}) + \frac{\partial}{\partial y}(\sin\theta\frac{\partial u}{\partial r} + \frac{\cos\theta}{r}\frac{\partial u}{\partial \theta})
=(cosθrsinθrθ)(cosθursinθruθ)+(sinθr+cosθrθ)(sinθur+cosθruθ)= (\cos\theta\frac{\partial}{\partial r} - \frac{\sin\theta}{r}\frac{\partial}{\partial \theta})(\cos\theta\frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}) + (\sin\theta\frac{\partial}{\partial r} + \frac{\cos\theta}{r}\frac{\partial}{\partial \theta})(\sin\theta\frac{\partial u}{\partial r} + \frac{\cos\theta}{r}\frac{\partial u}{\partial \theta})
=2ur2+1rur+1r22uθ2= \frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}

3. 最終的な答え

(1)
ur=cosθux+sinθuy\frac{\partial u}{\partial r} = \cos\theta\frac{\partial u}{\partial x} + \sin\theta\frac{\partial u}{\partial y}
uθ=rsinθux+rcosθuy\frac{\partial u}{\partial \theta} = -r\sin\theta\frac{\partial u}{\partial x} + r\cos\theta\frac{\partial u}{\partial y}
(2)
ux=cosθursinθruθ\frac{\partial u}{\partial x} = \cos\theta\frac{\partial u}{\partial r} - \frac{\sin\theta}{r}\frac{\partial u}{\partial \theta}
uy=sinθur+cosθruθ\frac{\partial u}{\partial y} = \sin\theta\frac{\partial u}{\partial r} + \frac{\cos\theta}{r}\frac{\partial u}{\partial \theta}
(3)
(ux)2+(uy)2=(ur)2+1r2(uθ)2(\frac{\partial u}{\partial x})^2 + (\frac{\partial u}{\partial y})^2 = (\frac{\partial u}{\partial r})^2 + \frac{1}{r^2}(\frac{\partial u}{\partial \theta})^2
2ux2+2uy2=2ur2+1rur+1r22uθ2\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2}

「解析学」の関連問題

(1) $S = 1\cdot1 + 2\cdot4 + 3\cdot4^2 + \dots + n\cdot4^{n-1}$ (2) $S = 1 + \frac{2}{3} + \frac{3}{...

級数数列の和等比数列
2025/7/4

$\int \frac{1}{(3x+2)^3}dx$ を計算し、与えられた形式 $-\frac{\boxed{ア}}{\boxed{イ}(\boxed{ウ}x+\boxed{エ})^{\boxed{...

積分置換積分定積分
2025/7/4

次の不定積分を求め、空欄を埋める問題です。 $\int \frac{1}{\sqrt[3]{x+1}} dx = \frac{\boxed{ア}}{\boxed{イ}} (x + \boxed{ウ})...

積分不定積分置換積分
2025/7/4

与えられた10個の極限の計算問題です。

極限関数の極限有理関数平方根絶対値
2025/7/4

不定積分 $\int xe^{x^2} dx$ を計算し、与えられた形式で答えを埋める。

積分不定積分置換積分指数関数
2025/7/4

不定積分 $\int \frac{1}{4 + x^2} dx$ を求め、その結果を $\frac{ア}{イ} \tan^{-1} \frac{ウ x}{エ} + C$ の形で表す。

積分不定積分逆正接関数公式
2025/7/4

$\int (a^x + b^{2x}) dx$ を計算し、与えられた形式で答えを埋めなさい。

積分指数関数置換積分
2025/7/4

$\frac{d}{dx} \left( \int_x^{2x} \cos^2 t dt \right) = (\text{ア}) \cos^2 2x + (\text{イ}) \cos^2 x$ の...

微積分学積分微分微積分学の基本定理
2025/7/4

$u=u(x, y)$, $x=r\cos\theta$, $y=r\sin\theta$ のとき、以下の問いに答えます。 (1) $\frac{\partial u}{\partial r}$, $...

偏微分連鎖律座標変換ラプラシアン
2025/7/4

与えられた関数に対して、偏微分や全微分を計算する問題です。具体的には、以下の4つの問題があります。 (1) $z = f(ax+by)$ ($a, b$は定数) のとき、$b\frac{\partia...

偏微分全微分合成関数陰関数
2025/7/4