与えられた積分 $\int_{-x}^{x} (sin(t) - pt)^2 dt$ を計算します。解析学積分定積分三角関数偶関数積分計算2025/6/291. 問題の内容与えられた積分∫−xx(sin(t)−pt)2dt\int_{-x}^{x} (sin(t) - pt)^2 dt∫−xx(sin(t)−pt)2dtを計算します。2. 解き方の手順まず、被積分関数を展開します。(sin(t)−pt)2=sin2(t)−2ptsin(t)+p2t2(sin(t) - pt)^2 = sin^2(t) - 2pt sin(t) + p^2 t^2(sin(t)−pt)2=sin2(t)−2ptsin(t)+p2t2次に、積分を各項に分けます。∫−xx(sin2(t)−2ptsin(t)+p2t2)dt=∫−xxsin2(t)dt−2p∫−xxtsin(t)dt+p2∫−xxt2dt\int_{-x}^{x} (sin^2(t) - 2pt sin(t) + p^2 t^2) dt = \int_{-x}^{x} sin^2(t) dt - 2p \int_{-x}^{x} t sin(t) dt + p^2 \int_{-x}^{x} t^2 dt∫−xx(sin2(t)−2ptsin(t)+p2t2)dt=∫−xxsin2(t)dt−2p∫−xxtsin(t)dt+p2∫−xxt2dt各積分を計算します。∫−xxsin2(t)dt=∫−xx1−cos(2t)2dt=12[t−12sin(2t)]−xx=12[x−12sin(2x)−(−x−12sin(−2x))]=12[2x−sin(2x)]=x−12sin(2x)\int_{-x}^{x} sin^2(t) dt = \int_{-x}^{x} \frac{1 - cos(2t)}{2} dt = \frac{1}{2} [t - \frac{1}{2}sin(2t)]_{-x}^{x} = \frac{1}{2} [x - \frac{1}{2}sin(2x) - (-x - \frac{1}{2}sin(-2x))] = \frac{1}{2}[2x - sin(2x)] = x - \frac{1}{2}sin(2x)∫−xxsin2(t)dt=∫−xx21−cos(2t)dt=21[t−21sin(2t)]−xx=21[x−21sin(2x)−(−x−21sin(−2x))]=21[2x−sin(2x)]=x−21sin(2x)∫−xxtsin(t)dt\int_{-x}^{x} t sin(t) dt∫−xxtsin(t)dt は偶関数なので、∫−xxtsin(t)dt=2∫0xtsin(t)dt=2[−tcos(t)+sin(t)]0x=2[−xcos(x)+sin(x)]=2sin(x)−2xcos(x)\int_{-x}^{x} t sin(t) dt = 2 \int_{0}^{x} t sin(t) dt = 2 [-t cos(t) + sin(t)]_{0}^{x} = 2[-x cos(x) + sin(x)] = 2sin(x) - 2x cos(x)∫−xxtsin(t)dt=2∫0xtsin(t)dt=2[−tcos(t)+sin(t)]0x=2[−xcos(x)+sin(x)]=2sin(x)−2xcos(x)∫−xxt2dt=[13t3]−xx=13x3−13(−x)3=23x3\int_{-x}^{x} t^2 dt = [\frac{1}{3}t^3]_{-x}^{x} = \frac{1}{3}x^3 - \frac{1}{3}(-x)^3 = \frac{2}{3}x^3∫−xxt2dt=[31t3]−xx=31x3−31(−x)3=32x3したがって、積分は次のようになります。∫−xx(sin2(t)−2ptsin(t)+p2t2)dt=x−12sin(2x)−2p(2sin(x)−2xcos(x))+p2(23x3)\int_{-x}^{x} (sin^2(t) - 2pt sin(t) + p^2 t^2) dt = x - \frac{1}{2}sin(2x) - 2p(2sin(x) - 2x cos(x)) + p^2 (\frac{2}{3}x^3)∫−xx(sin2(t)−2ptsin(t)+p2t2)dt=x−21sin(2x)−2p(2sin(x)−2xcos(x))+p2(32x3)=x−12sin(2x)−4psin(x)+4pxcos(x)+23p2x3= x - \frac{1}{2}sin(2x) - 4p sin(x) + 4px cos(x) + \frac{2}{3}p^2 x^3=x−21sin(2x)−4psin(x)+4pxcos(x)+32p2x33. 最終的な答えx−12sin(2x)−4psin(x)+4pxcos(x)+23p2x3x - \frac{1}{2}sin(2x) - 4p sin(x) + 4px cos(x) + \frac{2}{3}p^2 x^3x−21sin(2x)−4psin(x)+4pxcos(x)+32p2x3