与えられた数列の和 $\sum_{k=1}^{n} (2k-1)(2k+3)k$ を求める問題です。代数学数列Σ記号和展開公式適用2025/6/291. 問題の内容与えられた数列の和 ∑k=1n(2k−1)(2k+3)k\sum_{k=1}^{n} (2k-1)(2k+3)k∑k=1n(2k−1)(2k+3)k を求める問題です。2. 解き方の手順まず、(2k−1)(2k+3)k(2k-1)(2k+3)k(2k−1)(2k+3)kを展開します。(2k−1)(2k+3)k=(4k2+6k−2k−3)k=(4k2+4k−3)k=4k3+4k2−3k(2k-1)(2k+3)k = (4k^2 + 6k - 2k - 3)k = (4k^2 + 4k - 3)k = 4k^3 + 4k^2 - 3k(2k−1)(2k+3)k=(4k2+6k−2k−3)k=(4k2+4k−3)k=4k3+4k2−3kしたがって、求める和は∑k=1n(4k3+4k2−3k)\sum_{k=1}^{n} (4k^3 + 4k^2 - 3k)∑k=1n(4k3+4k2−3k)となります。ここで、∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)、∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)、∑k=1nk3=(n(n+1)2)2\sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2∑k=1nk3=(2n(n+1))2 を用います。∑k=1n(4k3+4k2−3k)=4∑k=1nk3+4∑k=1nk2−3∑k=1nk\sum_{k=1}^{n} (4k^3 + 4k^2 - 3k) = 4 \sum_{k=1}^{n} k^3 + 4 \sum_{k=1}^{n} k^2 - 3 \sum_{k=1}^{n} k∑k=1n(4k3+4k2−3k)=4∑k=1nk3+4∑k=1nk2−3∑k=1nk=4(n(n+1)2)2+4(n(n+1)(2n+1)6)−3(n(n+1)2)= 4 \left( \frac{n(n+1)}{2} \right)^2 + 4 \left( \frac{n(n+1)(2n+1)}{6} \right) - 3 \left( \frac{n(n+1)}{2} \right)=4(2n(n+1))2+4(6n(n+1)(2n+1))−3(2n(n+1))=n(n+1)[4n(n+1)4+4(2n+1)6−32]= n(n+1) \left[ \frac{4n(n+1)}{4} + \frac{4(2n+1)}{6} - \frac{3}{2} \right]=n(n+1)[44n(n+1)+64(2n+1)−23]=n(n+1)[n(n+1)+2(2n+1)3−32]= n(n+1) \left[ n(n+1) + \frac{2(2n+1)}{3} - \frac{3}{2} \right]=n(n+1)[n(n+1)+32(2n+1)−23]=n(n+1)[n2+n+4n+23−32]= n(n+1) \left[ n^2 + n + \frac{4n+2}{3} - \frac{3}{2} \right]=n(n+1)[n2+n+34n+2−23]=n(n+1)[6n2+6n+8n+4−96]= n(n+1) \left[ \frac{6n^2 + 6n + 8n + 4 - 9}{6} \right]=n(n+1)[66n2+6n+8n+4−9]=n(n+1)(6n2+14n−5)6= \frac{n(n+1)(6n^2 + 14n - 5)}{6}=6n(n+1)(6n2+14n−5)3. 最終的な答えn(n+1)(6n2+14n−5)6\frac{n(n+1)(6n^2 + 14n - 5)}{6}6n(n+1)(6n2+14n−5)