練習19の問題です。$a$、$b$は実数とします。次の条件の否定を求めます。 (1) $a$, $b$ の少なくとも一方は有理数である (2) $a$, $b$ はともに有理数である

代数学命題否定実数有理数無理数
2025/6/29

1. 問題の内容

練習19の問題です。aabbは実数とします。次の条件の否定を求めます。
(1) aa, bb の少なくとも一方は有理数である
(2) aa, bb はともに有理数である

2. 解き方の手順

(1) 「少なくとも一方は有理数である」の否定は「どちらも有理数ではない」つまり「aabbも有理数ではない」です。したがって、「aaは無理数かつbbは無理数」となります。
(2) 「ともに有理数である」の否定は「少なくとも一方は有理数ではない」です。つまり「aaまたはbbが有理数ではない」です。したがって、「aaは無理数またはbbは無理数」となります。

3. 最終的な答え

(1) aaは無理数かつbbは無理数
(2) aaは無理数またはbbは無理数

「代数学」の関連問題

$x = 3 + \sqrt{3}$、 $y = 2\sqrt{3}$ のとき、 $x^2 - xy$ の値を求めよ。

式の計算因数分解平方根代入
2025/6/29

実数 $a$ に対して、$A = \sqrt{9a^2 - 6a + 1} + |a+2|$ を簡単にすることを目的とする問題です。絶対値記号とルート記号を外すために、$a$ の値の範囲によって場合分...

絶対値式の計算場合分けルート
2025/6/29

選択問題として、AまたはBのいずれかの方程式を解きます。 A: $(7x-1)^2 + 6(7x-1) + 3 = 0$ B: $20000x^2 - 500x - 3 = 0$

二次方程式解の公式代数
2025/6/29

(1) ① 2次方程式 $x^2 + ax - 12 = 0$ の解の一つが $-2$ であるとき、$a$ の値を求める。 ② もう一つの解を求める。 (2) 2次方程式 $x^2 + ax + b ...

二次方程式解と係数の関係整数解因数分解平方根
2025/6/29

2つの二次方程式を解く問題です。 (3) $x^2 + 5x + 2 = 0$ (5) $-5 + 2x^2 = 5(x - 1)$

二次方程式解の公式因数分解
2025/6/29

3つの二次方程式を解く問題です。 (2) $(x+1)^2 - 196 = 0$ (4) $x^2 + 5x - 6 = 0$ (6) $(x+1)(2x-1) = (x+1)^2$

二次方程式因数分解方程式
2025/6/29

生徒会が集めた古紙は全部で960kgあり、そのうち220kgが段ボールで、残りは新聞紙と雑誌です。古紙1kgあたりの交換金額は、新聞紙7円、雑誌6円、段ボール8円です。これらの古紙をすべて回収してもら...

連立方程式文章問題方程式数量関係
2025/6/29

2つの数の和が100であり、一方の数が他方の数の2倍より10大きいとき、この2つの数を求める。

連立方程式一次方程式文章問題
2025/6/29

画用紙3枚とペン2本を買うと116円、画用紙1枚とペン3本を買うと132円である。画用紙1枚とペン1本の値段をそれぞれ求める。

連立方程式文章問題一次方程式
2025/6/29

1個130円のプリンと1個100円のゼリーを合わせて10個買ったところ、代金は1120円でした。プリンとゼリーをそれぞれ何個買ったか求める問題です。

連立方程式文章題方程式
2025/6/29