2次関数 $y = x^2 - \frac{4}{3}x + \frac{4}{9}$ について、$x$ の変域が $-6 \le x < 1$ のときの $y$ の値域を求める。

代数学二次関数値域平方完成放物線
2025/3/31

1. 問題の内容

2次関数 y=x243x+49y = x^2 - \frac{4}{3}x + \frac{4}{9} について、xx の変域が 6x<1-6 \le x < 1 のときの yy の値域を求める。

2. 解き方の手順

まず、与えられた2次関数を平方完成する。
y=x243x+49=(x23)2y = x^2 - \frac{4}{3}x + \frac{4}{9} = (x - \frac{2}{3})^2
このグラフは、頂点が (23,0)(\frac{2}{3}, 0) で、下に凸な放物線である。
変域 6x<1-6 \le x < 1 における yy の最小値と最大値を求める。
頂点の xx 座標 23\frac{2}{3} は与えられた変域に含まれるので、最小値は y=0y=0 である。
次に、変域の端点での yy の値を計算する。
x=6x = -6 のとき、
y=(623)2=(203)2=4009y = (-6 - \frac{2}{3})^2 = (-\frac{20}{3})^2 = \frac{400}{9}
x=1x = 1 のとき、
y=(123)2=(13)2=19y = (1 - \frac{2}{3})^2 = (\frac{1}{3})^2 = \frac{1}{9}
変域 6x<1-6 \le x < 1 なので、x=1x=1 のときは、不等号に等号は含まれていない。つまり、xx11 に限りなく近づくものの、11 をとることはない。しかし、yy の値は19\frac{1}{9} に限りなく近づくことはある。
したがって、6x<1-6 \le x < 1 における yy の値域は、0y40090 \le y \le \frac{400}{9}y<19y < \frac{1}{9} となる範囲が含まれる。4009>19\frac{400}{9} > \frac{1}{9} なので、0y40090 \le y \le \frac{400}{9} となる。

3. 最終的な答え

0y40090 \le y \le \frac{400}{9}
選択肢5が正解です。

「代数学」の関連問題

与えられた方程式 $3^2 + x^2 = (9 - x)^2$ を解いて、$x$ の値を求める問題です。

方程式二次方程式代数
2025/4/7

問題は3つの小問から構成されています。 問1:連立一次方程式を解き、その解を求める。また、各方程式を$y$について解き、空欄を埋める。最後に、適切な語句を選択する。 問2:連立一次方程式の解に対応する...

連立方程式一次方程式座標グラフ
2025/4/7

1次関数に関する問題です。 * 問1: $y = \frac{1}{3}x + 2$ について、指定された $x$ の値に対する $y$ の値を求め、また、指定された $x$ の変域に対する $y...

1次関数グラフ傾き切片変域
2025/4/7

画像の問題は一次関数に関する内容です。 問1では、一次関数 $y=4x-5$ について、指定された$x$の値に対する$y$の値や、$x$の変化に対する$y$の変化量、変化の割合を求めます。 問2では、...

一次関数傾き切片グラフ変化の割合
2025/4/7

与えられた連立方程式を解き、$x$と$y$の値を求める。 (1) $\begin{cases} x + 3y = 5 \\ 4x - y = 7 \end{cases}$ (2) $\begin{ca...

連立方程式方程式線形代数
2025/4/7

与えられた連立方程式の解を、加減法または代入法を用いて求める問題です。 問1: 連立方程式 $3x + 2y = 8$ (1) $4x + 5y = 13$ (2) について、yの係数を揃えて解...

連立方程式加減法代入法一次方程式
2025/4/7

与えられた計算問題および方程式を解く問題です。問題は3つのセクションに分かれています。 * 問1は、いくつかの数式を計算し、結果を求める問題です。 * 問2は、単項式の計算問題です。 * ...

式の計算単項式方程式一次方程式
2025/4/7

問題は、反比例の定義、反比例の式を求める問題、および反比例のグラフから式を求める問題です。具体的には、 問1: 空欄を埋める問題。 問2: 反比例の式を求め、指定された $x$ の値に対する $y$ ...

反比例比例定数双曲線グラフ
2025/4/7

比例・反比例の問題です。 問1は、$y$ が $x$ に比例するときの式、および具体的な $x$ の値に対する $y$ の値を求める問題です。 問2は、グラフから比例定数の正負を判断し、与えられたグラ...

比例反比例一次関数グラフ
2025/4/7

クラス会の費用を集めるために、1人180円ずつ集めると400円余り、1人150円ずつ集めると500円足りない。このとき、クラスの人数とクラス会の費用を求める。

一次方程式文章問題連立方程式数量関係
2025/4/7