与えられた7つの関数をそれぞれ微分する問題です。解析学微分三角関数合成関数の微分商の微分2025/6/29はい、承知いたしました。画像の問題を解きます。1. 問題の内容与えられた7つの関数をそれぞれ微分する問題です。2. 解き方の手順(1) y=sin2(3x)y = \sin^2(3x)y=sin2(3x)合成関数の微分を行います。y′=2sin(3x)⋅(sin(3x))′=2sin(3x)⋅cos(3x)⋅(3x)′=2sin(3x)⋅cos(3x)⋅3=6sin(3x)cos(3x)=3sin(6x)y' = 2\sin(3x) \cdot (\sin(3x))' = 2\sin(3x) \cdot \cos(3x) \cdot (3x)' = 2\sin(3x) \cdot \cos(3x) \cdot 3 = 6\sin(3x)\cos(3x) = 3\sin(6x)y′=2sin(3x)⋅(sin(3x))′=2sin(3x)⋅cos(3x)⋅(3x)′=2sin(3x)⋅cos(3x)⋅3=6sin(3x)cos(3x)=3sin(6x)(2) y=2sinxcosx(1−2sin2x)y = 2\sin x \cos x (1 - 2\sin^2 x)y=2sinxcosx(1−2sin2x)これは三角関数の公式を用いて簡単にできます。2sinxcosx=sin2x2\sin x \cos x = \sin 2x2sinxcosx=sin2x1−2sin2x=cos2x1 - 2\sin^2 x = \cos 2x1−2sin2x=cos2xしたがって、y=sin2xcos2x=12sin4xy = \sin 2x \cos 2x = \frac{1}{2} \sin 4xy=sin2xcos2x=21sin4xy′=12⋅cos4x⋅4=2cos4xy' = \frac{1}{2} \cdot \cos 4x \cdot 4 = 2\cos 4xy′=21⋅cos4x⋅4=2cos4x(3) y=sin3xcos3xy = \sin^3 x \cos^3 xy=sin3xcos3x積の微分を行います。y′=(sin3x)′cos3x+sin3x(cos3x)′=3sin2xcosxcos3x+sin3x⋅3cos2x(−sinx)=3sin2xcos4x−3sin4xcos2x=3sin2xcos2x(cos2x−sin2x)=3sin2xcos2xcos2x=34sin22xcos2xy' = (\sin^3 x)' \cos^3 x + \sin^3 x (\cos^3 x)' = 3\sin^2 x \cos x \cos^3 x + \sin^3 x \cdot 3\cos^2 x (-\sin x) = 3\sin^2 x \cos^4 x - 3\sin^4 x \cos^2 x = 3\sin^2 x \cos^2 x (\cos^2 x - \sin^2 x) = 3\sin^2 x \cos^2 x \cos 2x = \frac{3}{4} \sin^2 2x \cos 2x y′=(sin3x)′cos3x+sin3x(cos3x)′=3sin2xcosxcos3x+sin3x⋅3cos2x(−sinx)=3sin2xcos4x−3sin4xcos2x=3sin2xcos2x(cos2x−sin2x)=3sin2xcos2xcos2x=43sin22xcos2x(4) y=(sinx+cosx)2y = (\sin x + \cos x)^2y=(sinx+cosx)2y=sin2x+2sinxcosx+cos2x=1+sin2xy = \sin^2 x + 2\sin x \cos x + \cos^2 x = 1 + \sin 2xy=sin2x+2sinxcosx+cos2x=1+sin2xy′=cos2x⋅2=2cos2xy' = \cos 2x \cdot 2 = 2\cos 2xy′=cos2x⋅2=2cos2x(5) y=1sinx=cscxy = \frac{1}{\sin x} = \csc xy=sinx1=cscxy′=−cscxcotx=−cosxsin2xy' = -\csc x \cot x = -\frac{\cos x}{\sin^2 x}y′=−cscxcotx=−sin2xcosx(6) y=1tan2x=cot2xy = \frac{1}{\tan 2x} = \cot 2xy=tan2x1=cot2xy′=−1sin22x⋅2=−2sin22x=−2csc22xy' = -\frac{1}{\sin^2 2x} \cdot 2 = -\frac{2}{\sin^2 2x} = -2\csc^2 2xy′=−sin22x1⋅2=−sin22x2=−2csc22x(7) y=sinx1+cosxy = \frac{\sin x}{1 + \cos x}y=1+cosxsinx商の微分を行います。y′=(sinx)′(1+cosx)−sinx(1+cosx)′(1+cosx)2=cosx(1+cosx)−sinx(−sinx)(1+cosx)2=cosx+cos2x+sin2x(1+cosx)2=cosx+1(1+cosx)2=11+cosxy' = \frac{(\sin x)' (1 + \cos x) - \sin x (1 + \cos x)'}{(1 + \cos x)^2} = \frac{\cos x (1 + \cos x) - \sin x (-\sin x)}{(1 + \cos x)^2} = \frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2} = \frac{\cos x + 1}{(1 + \cos x)^2} = \frac{1}{1 + \cos x}y′=(1+cosx)2(sinx)′(1+cosx)−sinx(1+cosx)′=(1+cosx)2cosx(1+cosx)−sinx(−sinx)=(1+cosx)2cosx+cos2x+sin2x=(1+cosx)2cosx+1=1+cosx13. 最終的な答え(1) y′=3sin(6x)y' = 3\sin(6x)y′=3sin(6x)(2) y′=2cos(4x)y' = 2\cos(4x)y′=2cos(4x)(3) y′=34sin22xcos2xy' = \frac{3}{4} \sin^2 2x \cos 2xy′=43sin22xcos2x(4) y′=2cos(2x)y' = 2\cos(2x)y′=2cos(2x)(5) y′=−cosxsin2xy' = -\frac{\cos x}{\sin^2 x}y′=−sin2xcosx(6) y′=−2sin22xy' = -\frac{2}{\sin^2 2x}y′=−sin22x2(7) y′=11+cosxy' = \frac{1}{1 + \cos x}y′=1+cosx1