与えられた定積分 $\int_0^2 \frac{x^2}{(4+x^2)^2} dx$ を計算します。解析学定積分積分置換積分三角関数2025/6/301. 問題の内容与えられた定積分∫02x2(4+x2)2dx\int_0^2 \frac{x^2}{(4+x^2)^2} dx∫02(4+x2)2x2dxを計算します。2. 解き方の手順まず、x=2tanθx = 2\tan{\theta}x=2tanθ と置換します。すると、dx=2sec2θdθdx = 2\sec^2{\theta} d\thetadx=2sec2θdθとなります。積分範囲は、x=0x=0x=0のとき、tanθ=0\tan{\theta} = 0tanθ=0より θ=0\theta = 0θ=0x=2x=2x=2のとき、tanθ=1\tan{\theta} = 1tanθ=1より θ=π4\theta = \frac{\pi}{4}θ=4πとなります。積分は∫0π/4(2tanθ)2(4+(2tanθ)2)22sec2θdθ=∫0π/44tan2θ(4+4tan2θ)22sec2θdθ\int_0^{\pi/4} \frac{(2\tan{\theta})^2}{(4 + (2\tan{\theta})^2)^2} 2\sec^2{\theta} d\theta = \int_0^{\pi/4} \frac{4\tan^2{\theta}}{(4 + 4\tan^2{\theta})^2} 2\sec^2{\theta} d\theta∫0π/4(4+(2tanθ)2)2(2tanθ)22sec2θdθ=∫0π/4(4+4tan2θ)24tan2θ2sec2θdθ=∫0π/44tan2θ16(1+tan2θ)22sec2θdθ=∫0π/48tan2θsec2θ16sec4θdθ= \int_0^{\pi/4} \frac{4\tan^2{\theta}}{16(1 + \tan^2{\theta})^2} 2\sec^2{\theta} d\theta = \int_0^{\pi/4} \frac{8\tan^2{\theta} \sec^2{\theta}}{16\sec^4{\theta}} d\theta=∫0π/416(1+tan2θ)24tan2θ2sec2θdθ=∫0π/416sec4θ8tan2θsec2θdθ=12∫0π/4tan2θsec2θdθ=12∫0π/4sin2θdθ= \frac{1}{2} \int_0^{\pi/4} \frac{\tan^2{\theta}}{\sec^2{\theta}} d\theta = \frac{1}{2} \int_0^{\pi/4} \sin^2{\theta} d\theta=21∫0π/4sec2θtan2θdθ=21∫0π/4sin2θdθsin2θ=1−cos2θ2\sin^2{\theta} = \frac{1 - \cos{2\theta}}{2}sin2θ=21−cos2θ より、12∫0π/41−cos2θ2dθ=14∫0π/4(1−cos2θ)dθ\frac{1}{2} \int_0^{\pi/4} \frac{1 - \cos{2\theta}}{2} d\theta = \frac{1}{4} \int_0^{\pi/4} (1 - \cos{2\theta}) d\theta21∫0π/421−cos2θdθ=41∫0π/4(1−cos2θ)dθ=14[θ−12sin2θ]0π/4=14[(π4−12sinπ2)−(0−12sin0)]= \frac{1}{4} [\theta - \frac{1}{2}\sin{2\theta}]_0^{\pi/4} = \frac{1}{4} [(\frac{\pi}{4} - \frac{1}{2}\sin{\frac{\pi}{2}}) - (0 - \frac{1}{2}\sin{0})]=41[θ−21sin2θ]0π/4=41[(4π−21sin2π)−(0−21sin0)]=14(π4−12)=π16−18= \frac{1}{4} (\frac{\pi}{4} - \frac{1}{2}) = \frac{\pi}{16} - \frac{1}{8}=41(4π−21)=16π−813. 最終的な答えπ16−18\frac{\pi}{16} - \frac{1}{8}16π−81