$\sum_{k=1}^{n} (2k+1)(k+1)$ を計算し、$\frac{\text{ア}}{\text{イ}} n(\text{ウ} n^2 + \text{エ} n + \text{オ})$ の形で表す問題です。代数学シグマ数列展開公式2025/6/301. 問題の内容∑k=1n(2k+1)(k+1)\sum_{k=1}^{n} (2k+1)(k+1)∑k=1n(2k+1)(k+1) を計算し、アイn(ウn2+エn+オ)\frac{\text{ア}}{\text{イ}} n(\text{ウ} n^2 + \text{エ} n + \text{オ})イアn(ウn2+エn+オ) の形で表す問題です。2. 解き方の手順まず、(2k+1)(k+1)(2k+1)(k+1)(2k+1)(k+1) を展開します。(2k+1)(k+1)=2k2+2k+k+1=2k2+3k+1(2k+1)(k+1) = 2k^2 + 2k + k + 1 = 2k^2 + 3k + 1(2k+1)(k+1)=2k2+2k+k+1=2k2+3k+1次に、∑k=1n(2k2+3k+1)\sum_{k=1}^{n} (2k^2 + 3k + 1)∑k=1n(2k2+3k+1) を計算します。∑k=1n(2k2+3k+1)=2∑k=1nk2+3∑k=1nk+∑k=1n1\sum_{k=1}^{n} (2k^2 + 3k + 1) = 2\sum_{k=1}^{n} k^2 + 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1∑k=1n(2k2+3k+1)=2∑k=1nk2+3∑k=1nk+∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=n上記の公式を用いると、2∑k=1nk2+3∑k=1nk+∑k=1n1=2n(n+1)(2n+1)6+3n(n+1)2+n2\sum_{k=1}^{n} k^2 + 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 2\frac{n(n+1)(2n+1)}{6} + 3\frac{n(n+1)}{2} + n2∑k=1nk2+3∑k=1nk+∑k=1n1=26n(n+1)(2n+1)+32n(n+1)+n=n(n+1)(2n+1)3+3n(n+1)2+n= \frac{n(n+1)(2n+1)}{3} + \frac{3n(n+1)}{2} + n=3n(n+1)(2n+1)+23n(n+1)+n=n(n+1)(2n+1)3+3n(n+1)2+6n6= \frac{n(n+1)(2n+1)}{3} + \frac{3n(n+1)}{2} + \frac{6n}{6}=3n(n+1)(2n+1)+23n(n+1)+66n=2n(n+1)(2n+1)+9n(n+1)+6n6= \frac{2n(n+1)(2n+1) + 9n(n+1) + 6n}{6}=62n(n+1)(2n+1)+9n(n+1)+6n=n[2(n+1)(2n+1)+9(n+1)+6]6= \frac{n[2(n+1)(2n+1) + 9(n+1) + 6]}{6}=6n[2(n+1)(2n+1)+9(n+1)+6]=n[2(2n2+3n+1)+9n+9+6]6= \frac{n[2(2n^2+3n+1) + 9n+9 + 6]}{6}=6n[2(2n2+3n+1)+9n+9+6]=n[4n2+6n+2+9n+15]6= \frac{n[4n^2+6n+2 + 9n+15]}{6}=6n[4n2+6n+2+9n+15]=n(4n2+15n+17)6= \frac{n(4n^2+15n+17)}{6}=6n(4n2+15n+17)したがって、アイ=16\frac{\text{ア}}{\text{イ}} = \frac{1}{6}イア=61ウ=4\text{ウ} = 4ウ=4エ=15\text{エ} = 15エ=15オ=17\text{オ} = 17オ=173. 最終的な答えア: 1イ: 6ウ: 4エ: 15オ: 17