与えられた和 $\sum_{k=1}^{n} (2k-1) \cdot 3^k$ を計算せよ。解析学級数シグマ数列等比数列和2025/3/311. 問題の内容与えられた和 ∑k=1n(2k−1)⋅3k\sum_{k=1}^{n} (2k-1) \cdot 3^k∑k=1n(2k−1)⋅3k を計算せよ。2. 解き方の手順まず、与えられた和を2つの和に分解します。∑k=1n(2k−1)⋅3k=2∑k=1nk⋅3k−∑k=1n3k\sum_{k=1}^{n} (2k-1) \cdot 3^k = 2\sum_{k=1}^{n} k \cdot 3^k - \sum_{k=1}^{n} 3^k∑k=1n(2k−1)⋅3k=2∑k=1nk⋅3k−∑k=1n3k第2項は等比数列の和であり、容易に計算できます。∑k=1n3k=3(3n−1)3−1=32(3n−1)\sum_{k=1}^{n} 3^k = \frac{3(3^n - 1)}{3-1} = \frac{3}{2}(3^n - 1)∑k=1n3k=3−13(3n−1)=23(3n−1)第1項 ∑k=1nk⋅3k\sum_{k=1}^{n} k \cdot 3^k∑k=1nk⋅3k を SSS とおきます。S=∑k=1nk⋅3k=1⋅31+2⋅32+3⋅33+⋯+n⋅3nS = \sum_{k=1}^{n} k \cdot 3^k = 1 \cdot 3^1 + 2 \cdot 3^2 + 3 \cdot 3^3 + \dots + n \cdot 3^nS=∑k=1nk⋅3k=1⋅31+2⋅32+3⋅33+⋯+n⋅3nこの SSS を用いて 3S3S3S を計算します。3S=1⋅32+2⋅33+3⋅34+⋯+(n−1)⋅3n+n⋅3n+13S = 1 \cdot 3^2 + 2 \cdot 3^3 + 3 \cdot 3^4 + \dots + (n-1) \cdot 3^n + n \cdot 3^{n+1}3S=1⋅32+2⋅33+3⋅34+⋯+(n−1)⋅3n+n⋅3n+1S−3SS - 3SS−3S を計算します。−2S=31+32+33+⋯+3n−n⋅3n+1-2S = 3^1 + 3^2 + 3^3 + \dots + 3^n - n \cdot 3^{n+1}−2S=31+32+33+⋯+3n−n⋅3n+1=∑k=1n3k−n⋅3n+1=32(3n−1)−n⋅3n+1= \sum_{k=1}^{n} 3^k - n \cdot 3^{n+1} = \frac{3}{2}(3^n - 1) - n \cdot 3^{n+1}=∑k=1n3k−n⋅3n+1=23(3n−1)−n⋅3n+1−2S=32(3n−1)−n⋅3n+1-2S = \frac{3}{2}(3^n - 1) - n \cdot 3^{n+1}−2S=23(3n−1)−n⋅3n+1S=−34(3n−1)+n2⋅3n+1=34(−3n+1+2n⋅3n⋅3)=34(6n⋅3n−3n+1)=34((6n−1)3n+1)S = -\frac{3}{4}(3^n - 1) + \frac{n}{2} \cdot 3^{n+1} = \frac{3}{4}(-3^n + 1 + 2n \cdot 3^n \cdot 3) = \frac{3}{4}(6n \cdot 3^n - 3^n + 1) = \frac{3}{4}((6n-1)3^n + 1)S=−43(3n−1)+2n⋅3n+1=43(−3n+1+2n⋅3n⋅3)=43(6n⋅3n−3n+1)=43((6n−1)3n+1)S=3(6n−1)3n+34S = \frac{3(6n-1)3^n+3}{4}S=43(6n−1)3n+3よって、∑k=1n(2k−1)⋅3k=2S−32(3n−1)=2⋅34((6n−1)3n+1)−32(3n−1)\sum_{k=1}^{n} (2k-1) \cdot 3^k = 2S - \frac{3}{2}(3^n - 1) = 2 \cdot \frac{3}{4}((6n-1)3^n + 1) - \frac{3}{2}(3^n - 1)∑k=1n(2k−1)⋅3k=2S−23(3n−1)=2⋅43((6n−1)3n+1)−23(3n−1)=32((6n−1)3n+1)−32(3n−1)=32(6n⋅3n−3n+1−3n+1)= \frac{3}{2}((6n-1)3^n + 1) - \frac{3}{2}(3^n - 1) = \frac{3}{2}(6n \cdot 3^n - 3^n + 1 - 3^n + 1)=23((6n−1)3n+1)−23(3n−1)=23(6n⋅3n−3n+1−3n+1)=32(6n⋅3n−2⋅3n+2)=3(3n⋅3n−3n+1)=3(3n−1)3n+3= \frac{3}{2}(6n \cdot 3^n - 2 \cdot 3^n + 2) = 3(3n \cdot 3^n - 3^n + 1) = 3(3n-1)3^n+3=23(6n⋅3n−2⋅3n+2)=3(3n⋅3n−3n+1)=3(3n−1)3n+3∑k=1n(2k−1)⋅3k=(3n−1)3n+1+3\sum_{k=1}^{n} (2k-1) \cdot 3^k = (3n-1)3^{n+1}+3∑k=1n(2k−1)⋅3k=(3n−1)3n+1+33. 最終的な答え(3n−1)3n+1+3(3n-1)3^{n+1}+3(3n−1)3n+1+3