定積分 $\int_{0}^{\pi/2} (1+2\sin x)^4 dx$ を計算します。解析学定積分三角関数二項定理2025/7/301. 問題の内容定積分 ∫0π/2(1+2sinx)4dx\int_{0}^{\pi/2} (1+2\sin x)^4 dx∫0π/2(1+2sinx)4dx を計算します。2. 解き方の手順まず、二項定理を用いて (1+2sinx)4(1+2\sin x)^4(1+2sinx)4 を展開します。(1+2sinx)4=∑k=04(4k)(2sinx)k=(40)+(41)(2sinx)+(42)(2sinx)2+(43)(2sinx)3+(44)(2sinx)4(1+2\sin x)^4 = \sum_{k=0}^{4} \binom{4}{k} (2\sin x)^k = \binom{4}{0} + \binom{4}{1} (2\sin x) + \binom{4}{2} (2\sin x)^2 + \binom{4}{3} (2\sin x)^3 + \binom{4}{4} (2\sin x)^4(1+2sinx)4=k=0∑4(k4)(2sinx)k=(04)+(14)(2sinx)+(24)(2sinx)2+(34)(2sinx)3+(44)(2sinx)4=1+4(2sinx)+6(4sin2x)+4(8sin3x)+16sin4x= 1 + 4(2\sin x) + 6(4\sin^2 x) + 4(8\sin^3 x) + 16\sin^4 x=1+4(2sinx)+6(4sin2x)+4(8sin3x)+16sin4x=1+8sinx+24sin2x+32sin3x+16sin4x= 1 + 8\sin x + 24\sin^2 x + 32\sin^3 x + 16\sin^4 x=1+8sinx+24sin2x+32sin3x+16sin4xしたがって、∫0π/2(1+2sinx)4dx=∫0π/2(1+8sinx+24sin2x+32sin3x+16sin4x)dx\int_{0}^{\pi/2} (1+2\sin x)^4 dx = \int_{0}^{\pi/2} (1 + 8\sin x + 24\sin^2 x + 32\sin^3 x + 16\sin^4 x) dx∫0π/2(1+2sinx)4dx=∫0π/2(1+8sinx+24sin2x+32sin3x+16sin4x)dx各項を個別に計算します。∫0π/21dx=[x]0π/2=π2\int_{0}^{\pi/2} 1 dx = [x]_{0}^{\pi/2} = \frac{\pi}{2}∫0π/21dx=[x]0π/2=2π∫0π/2sinxdx=[−cosx]0π/2=−cos(π/2)+cos(0)=0+1=1\int_{0}^{\pi/2} \sin x dx = [-\cos x]_{0}^{\pi/2} = -\cos(\pi/2) + \cos(0) = 0 + 1 = 1∫0π/2sinxdx=[−cosx]0π/2=−cos(π/2)+cos(0)=0+1=1∫0π/2sin2xdx=∫0π/21−cos(2x)2dx=12[x−12sin(2x)]0π/2=12[π2−0−(0−0)]=π4\int_{0}^{\pi/2} \sin^2 x dx = \int_{0}^{\pi/2} \frac{1-\cos(2x)}{2} dx = \frac{1}{2} [x - \frac{1}{2}\sin(2x)]_{0}^{\pi/2} = \frac{1}{2} [\frac{\pi}{2} - 0 - (0 - 0)] = \frac{\pi}{4}∫0π/2sin2xdx=∫0π/221−cos(2x)dx=21[x−21sin(2x)]0π/2=21[2π−0−(0−0)]=4π∫0π/2sin3xdx=∫0π/2sinx(1−cos2x)dx=∫0π/2(sinx−sinxcos2x)dx=[−cosx+cos3x3]0π/2=(0+0)−(−1+13)=1−13=23\int_{0}^{\pi/2} \sin^3 x dx = \int_{0}^{\pi/2} \sin x (1-\cos^2 x) dx = \int_{0}^{\pi/2} (\sin x - \sin x \cos^2 x) dx = [-\cos x + \frac{\cos^3 x}{3}]_{0}^{\pi/2} = (0+0) - (-1+\frac{1}{3}) = 1 - \frac{1}{3} = \frac{2}{3}∫0π/2sin3xdx=∫0π/2sinx(1−cos2x)dx=∫0π/2(sinx−sinxcos2x)dx=[−cosx+3cos3x]0π/2=(0+0)−(−1+31)=1−31=32∫0π/2sin4xdx=∫0π/2(sin2x)2dx=∫0π/2(1−cos(2x)2)2dx=14∫0π/2(1−2cos(2x)+cos2(2x))dx=14∫0π/2(1−2cos(2x)+1+cos(4x)2)dx=14[x−sin(2x)+12x+18sin(4x)]0π/2=14[3π2−0+0−0]=3π8⋅2=3π16\int_{0}^{\pi/2} \sin^4 x dx = \int_{0}^{\pi/2} (\sin^2 x)^2 dx = \int_{0}^{\pi/2} (\frac{1-\cos(2x)}{2})^2 dx = \frac{1}{4} \int_{0}^{\pi/2} (1 - 2\cos(2x) + \cos^2(2x)) dx = \frac{1}{4} \int_{0}^{\pi/2} (1 - 2\cos(2x) + \frac{1+\cos(4x)}{2}) dx = \frac{1}{4} [x - \sin(2x) + \frac{1}{2}x + \frac{1}{8}\sin(4x)]_{0}^{\pi/2} = \frac{1}{4} [\frac{3\pi}{2} - 0 + 0 - 0] = \frac{3\pi}{8 \cdot 2} = \frac{3\pi}{16}∫0π/2sin4xdx=∫0π/2(sin2x)2dx=∫0π/2(21−cos(2x))2dx=41∫0π/2(1−2cos(2x)+cos2(2x))dx=41∫0π/2(1−2cos(2x)+21+cos(4x))dx=41[x−sin(2x)+21x+81sin(4x)]0π/2=41[23π−0+0−0]=8⋅23π=163πよって、∫0π/2(1+2sinx)4dx=π2+8(1)+24(π4)+32(23)+16(3π16)=π2+8+6π+643+3π=π2+9π+8+643=19π2+24+643=19π2+883\int_{0}^{\pi/2} (1+2\sin x)^4 dx = \frac{\pi}{2} + 8(1) + 24(\frac{\pi}{4}) + 32(\frac{2}{3}) + 16(\frac{3\pi}{16}) = \frac{\pi}{2} + 8 + 6\pi + \frac{64}{3} + 3\pi = \frac{\pi}{2} + 9\pi + 8 + \frac{64}{3} = \frac{19\pi}{2} + \frac{24+64}{3} = \frac{19\pi}{2} + \frac{88}{3}∫0π/2(1+2sinx)4dx=2π+8(1)+24(4π)+32(32)+16(163π)=2π+8+6π+364+3π=2π+9π+8+364=219π+324+64=219π+3883. 最終的な答え19π2+883\frac{19\pi}{2} + \frac{88}{3}219π+388