以下の6つの極限値を求めます。 (1) $\lim_{x \to 0} \frac{\sin 5x}{\sin 2x}$ (2) $\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}$ (3) $\lim_{x \to \infty} x \sin \frac{1}{4x}$ (4) $\lim_{x \to \pi} \frac{\sin x}{x - \pi}$ (5) $\lim_{x \to 0} \frac{x^2}{1 - \cos 2x}$ (6) $\lim_{x \to \frac{\pi}{2}} \frac{\sin (2 \cos x)}{x - \frac{\pi}{2}}$

解析学極限三角関数ロピタルの定理
2025/3/31
はい、承知いたしました。画像にある6つの極限の問題を解きます。

1. 問題の内容

以下の6つの極限値を求めます。
(1) limx0sin5xsin2x\lim_{x \to 0} \frac{\sin 5x}{\sin 2x}
(2) limx0xtanx1cosx\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}
(3) limxxsin14x\lim_{x \to \infty} x \sin \frac{1}{4x}
(4) limxπsinxxπ\lim_{x \to \pi} \frac{\sin x}{x - \pi}
(5) limx0x21cos2x\lim_{x \to 0} \frac{x^2}{1 - \cos 2x}
(6) limxπ2sin(2cosx)xπ2\lim_{x \to \frac{\pi}{2}} \frac{\sin (2 \cos x)}{x - \frac{\pi}{2}}

2. 解き方の手順

(1) limx0sin5xsin2x\lim_{x \to 0} \frac{\sin 5x}{\sin 2x}
limx0sin5xsin2x=limx0sin5xxsin2xx=limx05sin5x5x2sin2x2x=5211=52\lim_{x \to 0} \frac{\sin 5x}{\sin 2x} = \lim_{x \to 0} \frac{\frac{\sin 5x}{x}}{\frac{\sin 2x}{x}} = \lim_{x \to 0} \frac{5 \cdot \frac{\sin 5x}{5x}}{2 \cdot \frac{\sin 2x}{2x}} = \frac{5}{2} \cdot \frac{1}{1} = \frac{5}{2}
(2) limx0xtanx1cosx\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}
limx0xtanx1cosx=limx0xsinxcosx1cosx=limx0xsinxcosx(1cosx)=limx0xsinxcosx(1cosx)1+cosx1+cosx=limx0xsinx(1+cosx)cosx(1cos2x)=limx0xsinx(1+cosx)cosxsin2x=limx0x(1+cosx)cosxsinx=limx0xsinxlimx01+cosxcosx=11+11=2\lim_{x \to 0} \frac{x \tan x}{1 - \cos x} = \lim_{x \to 0} \frac{x \frac{\sin x}{\cos x}}{1 - \cos x} = \lim_{x \to 0} \frac{x \sin x}{\cos x (1 - \cos x)} = \lim_{x \to 0} \frac{x \sin x}{\cos x (1 - \cos x)} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{x \sin x (1 + \cos x)}{\cos x (1 - \cos^2 x)} = \lim_{x \to 0} \frac{x \sin x (1 + \cos x)}{\cos x \sin^2 x} = \lim_{x \to 0} \frac{x (1 + \cos x)}{\cos x \sin x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \lim_{x \to 0} \frac{1 + \cos x}{\cos x} = 1 \cdot \frac{1 + 1}{1} = 2
(3) limxxsin14x\lim_{x \to \infty} x \sin \frac{1}{4x}
t=14xt = \frac{1}{4x} と置くと、xx \to \infty のとき t0t \to 0 であり、x=14tx = \frac{1}{4t} となる。
limxxsin14x=limt014tsint=limt014sintt=141=14\lim_{x \to \infty} x \sin \frac{1}{4x} = \lim_{t \to 0} \frac{1}{4t} \sin t = \lim_{t \to 0} \frac{1}{4} \cdot \frac{\sin t}{t} = \frac{1}{4} \cdot 1 = \frac{1}{4}
(4) limxπsinxxπ\lim_{x \to \pi} \frac{\sin x}{x - \pi}
t=xπt = x - \pi と置くと、xπx \to \pi のとき t0t \to 0 であり、x=t+πx = t + \pi となる。
limxπsinxxπ=limt0sin(t+π)t=limt0sintt=1\lim_{x \to \pi} \frac{\sin x}{x - \pi} = \lim_{t \to 0} \frac{\sin (t + \pi)}{t} = \lim_{t \to 0} \frac{-\sin t}{t} = -1
(5) limx0x21cos2x\lim_{x \to 0} \frac{x^2}{1 - \cos 2x}
limx0x21cos2x=limx0x22sin2x=limx012x2sin2x=12(limx0xsinx)2=1212=12\lim_{x \to 0} \frac{x^2}{1 - \cos 2x} = \lim_{x \to 0} \frac{x^2}{2 \sin^2 x} = \lim_{x \to 0} \frac{1}{2} \cdot \frac{x^2}{\sin^2 x} = \frac{1}{2} \cdot \left( \lim_{x \to 0} \frac{x}{\sin x} \right)^2 = \frac{1}{2} \cdot 1^2 = \frac{1}{2}
(6) limxπ2sin(2cosx)xπ2\lim_{x \to \frac{\pi}{2}} \frac{\sin (2 \cos x)}{x - \frac{\pi}{2}}
t=xπ2t = x - \frac{\pi}{2} と置くと、xπ2x \to \frac{\pi}{2} のとき t0t \to 0 であり、x=t+π2x = t + \frac{\pi}{2} となる。
limxπ2sin(2cosx)xπ2=limt0sin(2cos(t+π2))t=limt0sin(2sint)t=limt0sin(2sint)t=limt02sintt=2\lim_{x \to \frac{\pi}{2}} \frac{\sin (2 \cos x)}{x - \frac{\pi}{2}} = \lim_{t \to 0} \frac{\sin (2 \cos (t + \frac{\pi}{2}))}{t} = \lim_{t \to 0} \frac{\sin (-2 \sin t)}{t} = \lim_{t \to 0} \frac{-\sin (2 \sin t)}{t} = \lim_{t \to 0} \frac{-2 \sin t}{t} = -2

3. 最終的な答え

(1) 52\frac{5}{2}
(2) 22
(3) 14\frac{1}{4}
(4) 1-1
(5) 12\frac{1}{2}
(6) 2-2

「解析学」の関連問題

与えられた積分 $\int \frac{2}{y(y-2)} dy$ を計算します。

積分部分分数分解対数関数
2025/7/30

O(0, 0), P(cos θ, sin θ), Q(-1, 0) が与えられている。P, Q を通る直線と y 軸との交点を R(0, t) とする。以下の問いに答える。 (1) ∠RQO を θ...

三角関数微分積分媒介変数表示
2025/7/30

広義積分 $\int_{0}^{1} \frac{1}{x^{\alpha}} dx$ が、$\alpha < 1$ のとき $\frac{1}{1-\alpha}$ に収束し、$\alpha \ge...

広義積分積分収束発散極限
2025/7/30

実数 $a$ に対して、定積分 $f(a) = \int_0^1 e^x |x-a| dx$ を考える。 (1) 定積分 $\int_0^1 e^x (x-a) dx$ を求めよ。 (2) $f(a)...

定積分絶対値最小値部分積分指数関数
2025/7/30

$n$ を自然数とするとき、$y = \sin x$ の第 $n$ 次導関数を求める。

三角関数微分導関数数学的帰納法
2025/7/30

関数 $y=xe^x$ の3次導関数 $y^{(3)}$ を求める問題です。

微分導関数積の微分法指数関数
2025/7/30

定積分 $\int_{0}^{\pi/2} (1+2\sin x)^4 dx$ を計算します。

定積分三角関数二項定理
2025/7/30

次の図形の面積を求めます。 (1) 曲線 $y = x^2$ と直線 $y = 2x + 3$ で囲まれた図形 (2) 2曲線 $y = x^2 + x$ , $y = x^3 - x$ で囲まれた図...

積分面積定積分グラフ交点
2025/7/30

与えられた3つの極限値を求める問題です。 (1) $\lim_{x \to +0} \frac{|x|}{x}$ (2) $\lim_{x \to 2-0} \frac{x^2 - 4}{|x-2|}...

極限絶対値ガウス記号関数の極限
2025/7/30

実数 $a$ に対して、関数 $f(a)$ が定積分 $f(a) = \int_{0}^{1} e^x |x-a| dx$ で定義されている。 (1) 定積分 $\int_{0}^{1} e^x(x-...

定積分絶対値部分積分関数の最小値微分
2025/7/30