次の6つの極限値を求める問題です。 (1) $\lim_{x \to 0} \frac{\sin 5x}{\sin 2x}$ (2) $\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}$ (3) $\lim_{x \to \infty} x \sin \frac{1}{4x}$ (4) $\lim_{x \to \pi} \frac{\sin x}{x - \pi}$ (5) $\lim_{x \to 0} \frac{x^2}{1 - \cos 2x}$ (6) $\lim_{x \to \frac{\pi}{2}} \frac{\sin(2 \cos x)}{x - \frac{\pi}{2}}$

解析学極限三角関数ロピタルの定理
2025/3/31

1. 問題の内容

次の6つの極限値を求める問題です。
(1) limx0sin5xsin2x\lim_{x \to 0} \frac{\sin 5x}{\sin 2x}
(2) limx0xtanx1cosx\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}
(3) limxxsin14x\lim_{x \to \infty} x \sin \frac{1}{4x}
(4) limxπsinxxπ\lim_{x \to \pi} \frac{\sin x}{x - \pi}
(5) limx0x21cos2x\lim_{x \to 0} \frac{x^2}{1 - \cos 2x}
(6) limxπ2sin(2cosx)xπ2\lim_{x \to \frac{\pi}{2}} \frac{\sin(2 \cos x)}{x - \frac{\pi}{2}}

2. 解き方の手順

(1) limx0sin5xsin2x\lim_{x \to 0} \frac{\sin 5x}{\sin 2x}
limx0sin5xsin2x=limx0sin5xxsin2xx=limx0sin5x5x5sin2x2x2=1512=52\lim_{x \to 0} \frac{\sin 5x}{\sin 2x} = \lim_{x \to 0} \frac{\frac{\sin 5x}{x}}{\frac{\sin 2x}{x}} = \lim_{x \to 0} \frac{\frac{\sin 5x}{5x} \cdot 5}{\frac{\sin 2x}{2x} \cdot 2} = \frac{1 \cdot 5}{1 \cdot 2} = \frac{5}{2}
(2) limx0xtanx1cosx\lim_{x \to 0} \frac{x \tan x}{1 - \cos x}
limx0xtanx1cosx=limx0xsinxcosx1cosx=limx0xsinxcosx(1cosx)=limx0xsinxcosx(1cosx)1+cosx1+cosx=limx0xsinx(1+cosx)cosx(1cos2x)=limx0xsinx(1+cosx)cosxsin2x=limx0x(1+cosx)cosxsinx=limx0xsinx1+cosxcosx=11+11=2\lim_{x \to 0} \frac{x \tan x}{1 - \cos x} = \lim_{x \to 0} \frac{x \frac{\sin x}{\cos x}}{1 - \cos x} = \lim_{x \to 0} \frac{x \sin x}{\cos x (1 - \cos x)} = \lim_{x \to 0} \frac{x \sin x}{\cos x (1 - \cos x)} \cdot \frac{1 + \cos x}{1 + \cos x} = \lim_{x \to 0} \frac{x \sin x (1 + \cos x)}{\cos x (1 - \cos^2 x)} = \lim_{x \to 0} \frac{x \sin x (1 + \cos x)}{\cos x \sin^2 x} = \lim_{x \to 0} \frac{x (1 + \cos x)}{\cos x \sin x} = \lim_{x \to 0} \frac{x}{\sin x} \cdot \frac{1 + \cos x}{\cos x} = 1 \cdot \frac{1 + 1}{1} = 2
(3) limxxsin14x\lim_{x \to \infty} x \sin \frac{1}{4x}
t=14xt = \frac{1}{4x} とおくと, xx \to \infty のとき t0t \to 0 であり, x=14tx = \frac{1}{4t} となる。
limxxsin14x=limt014tsint=limt0sint4t=14limt0sintt=141=14\lim_{x \to \infty} x \sin \frac{1}{4x} = \lim_{t \to 0} \frac{1}{4t} \sin t = \lim_{t \to 0} \frac{\sin t}{4t} = \frac{1}{4} \lim_{t \to 0} \frac{\sin t}{t} = \frac{1}{4} \cdot 1 = \frac{1}{4}
(4) limxπsinxxπ\lim_{x \to \pi} \frac{\sin x}{x - \pi}
t=xπt = x - \pi とおくと, xπx \to \pi のとき t0t \to 0 であり, x=t+πx = t + \pi となる。
limxπsinxxπ=limt0sin(t+π)t=limt0sintt=1\lim_{x \to \pi} \frac{\sin x}{x - \pi} = \lim_{t \to 0} \frac{\sin (t + \pi)}{t} = \lim_{t \to 0} \frac{-\sin t}{t} = -1
(5) limx0x21cos2x\lim_{x \to 0} \frac{x^2}{1 - \cos 2x}
limx0x21cos2x=limx0x22sin2x=limx012x2sin2x=12limx0(xsinx)2=1212=12\lim_{x \to 0} \frac{x^2}{1 - \cos 2x} = \lim_{x \to 0} \frac{x^2}{2 \sin^2 x} = \lim_{x \to 0} \frac{1}{2} \cdot \frac{x^2}{\sin^2 x} = \frac{1}{2} \lim_{x \to 0} (\frac{x}{\sin x})^2 = \frac{1}{2} \cdot 1^2 = \frac{1}{2}
(6) limxπ2sin(2cosx)xπ2\lim_{x \to \frac{\pi}{2}} \frac{\sin(2 \cos x)}{x - \frac{\pi}{2}}
t=xπ2t = x - \frac{\pi}{2} とおくと, xπ2x \to \frac{\pi}{2} のとき t0t \to 0 であり, x=t+π2x = t + \frac{\pi}{2} となる。
limxπ2sin(2cosx)xπ2=limt0sin(2cos(t+π2))t=limt0sin(2sint)t=limt0sin(2sint)t=limt0sin(2sint)2sint2sintt=121=2\lim_{x \to \frac{\pi}{2}} \frac{\sin(2 \cos x)}{x - \frac{\pi}{2}} = \lim_{t \to 0} \frac{\sin(2 \cos (t + \frac{\pi}{2}))}{t} = \lim_{t \to 0} \frac{\sin(-2 \sin t)}{t} = \lim_{t \to 0} \frac{-\sin(2 \sin t)}{t} = \lim_{t \to 0} \frac{-\sin(2 \sin t)}{2 \sin t} \cdot \frac{2 \sin t}{t} = -1 \cdot 2 \cdot 1 = -2

3. 最終的な答え

(1) 52\frac{5}{2}
(2) 22
(3) 14\frac{1}{4}
(4) 1-1
(5) 12\frac{1}{2}
(6) 2-2

「解析学」の関連問題