$\sum_{k=1}^{n} 2k(k-2)$ を計算します。代数学級数シグマ等差数列等比数列数学的帰納法2025/6/301. 問題の内容∑k=1n2k(k−2)\sum_{k=1}^{n} 2k(k-2)∑k=1n2k(k−2) を計算します。2. 解き方の手順まず、和の中の式を展開します。2k(k−2)=2k2−4k2k(k-2) = 2k^2 - 4k2k(k−2)=2k2−4kしたがって、求めるべき和は∑k=1n(2k2−4k)=2∑k=1nk2−4∑k=1nk\sum_{k=1}^{n} (2k^2 - 4k) = 2\sum_{k=1}^{n} k^2 - 4\sum_{k=1}^{n} k∑k=1n(2k2−4k)=2∑k=1nk2−4∑k=1nk∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)これらの公式を代入すると2∑k=1nk2−4∑k=1nk=2⋅n(n+1)(2n+1)6−4⋅n(n+1)22\sum_{k=1}^{n} k^2 - 4\sum_{k=1}^{n} k = 2 \cdot \frac{n(n+1)(2n+1)}{6} - 4 \cdot \frac{n(n+1)}{2}2∑k=1nk2−4∑k=1nk=2⋅6n(n+1)(2n+1)−4⋅2n(n+1)=n(n+1)(2n+1)3−2n(n+1)= \frac{n(n+1)(2n+1)}{3} - 2n(n+1)=3n(n+1)(2n+1)−2n(n+1)=n(n+1)(2n+1)−6n(n+1)3= \frac{n(n+1)(2n+1) - 6n(n+1)}{3}=3n(n+1)(2n+1)−6n(n+1)=n(n+1)(2n+1−6)3= \frac{n(n+1)(2n+1-6)}{3}=3n(n+1)(2n+1−6)=n(n+1)(2n−5)3= \frac{n(n+1)(2n-5)}{3}=3n(n+1)(2n−5)3. 最終的な答えn(n+1)(2n−5)3\frac{n(n+1)(2n-5)}{3}3n(n+1)(2n−5)