$\sin \theta + \cos \theta = \frac{1}{4}$のとき、$\sin^3 \theta + \cos^3 \theta$の値を求めよ。代数学三角関数恒等式数式展開2025/7/11. 問題の内容sinθ+cosθ=14\sin \theta + \cos \theta = \frac{1}{4}sinθ+cosθ=41のとき、sin3θ+cos3θ\sin^3 \theta + \cos^3 \thetasin3θ+cos3θの値を求めよ。2. 解き方の手順まず、sin3θ+cos3θ\sin^3 \theta + \cos^3 \thetasin3θ+cos3θを因数分解します。a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)の公式を利用すると、sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)\sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)sin3θ+cos3θ=(sinθ+cosθ)(sin2θ−sinθcosθ+cos2θ)ここで、sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1sin2θ+cos2θ=1 なので、sin3θ+cos3θ=(sinθ+cosθ)(1−sinθcosθ)\sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta)sin3θ+cos3θ=(sinθ+cosθ)(1−sinθcosθ)sinθ+cosθ=14\sin \theta + \cos \theta = \frac{1}{4}sinθ+cosθ=41 なので、sinθcosθ\sin \theta \cos \thetasinθcosθ の値を求めます。(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ(\sin \theta + \cos \theta)^2 = \sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ(14)2=1+2sinθcosθ(\frac{1}{4})^2 = 1 + 2 \sin \theta \cos \theta(41)2=1+2sinθcosθ116=1+2sinθcosθ\frac{1}{16} = 1 + 2 \sin \theta \cos \theta161=1+2sinθcosθ2sinθcosθ=116−1=1−1616=−15162 \sin \theta \cos \theta = \frac{1}{16} - 1 = \frac{1-16}{16} = -\frac{15}{16}2sinθcosθ=161−1=161−16=−1615sinθcosθ=−1532\sin \theta \cos \theta = -\frac{15}{32}sinθcosθ=−3215よって、sin3θ+cos3θ=(14)(1−(−1532))=14(1+1532)=14(32+1532)=14(4732)=47128\sin^3 \theta + \cos^3 \theta = (\frac{1}{4})(1 - (-\frac{15}{32})) = \frac{1}{4}(1 + \frac{15}{32}) = \frac{1}{4}(\frac{32+15}{32}) = \frac{1}{4}(\frac{47}{32}) = \frac{47}{128}sin3θ+cos3θ=(41)(1−(−3215))=41(1+3215)=41(3232+15)=41(3247)=128473. 最終的な答え47128\frac{47}{128}12847