点Tで直線$l$に接する2つの円O, O'がある。直線$l$上に点Pがあり、Pを通る2直線と円O, O'との交点をA, B, C, Dとする。このとき、4点A, B, C, Dが1つの円周上にあることを証明する。

幾何学接線方べきの定理円周角証明
2025/7/1

1. 問題の内容

点Tで直線llに接する2つの円O, O'がある。直線ll上に点Pがあり、Pを通る2直線と円O, O'との交点をA, B, C, Dとする。このとき、4点A, B, C, Dが1つの円周上にあることを証明する。

2. 解き方の手順

円に内接する四角形の定理の逆を利用して証明する。
まず、方べきの定理を用いて、PAPB=PCPDPA \cdot PB = PC \cdot PDを示す。
* 円Oにおいて、PTは円Oの接線であるから、方べきの定理より、
PT2=PAPBPT^2 = PA \cdot PB
* 同様に、円O'において、PTは円O'の接線であるから、方べきの定理より、
PT2=PCPDPT^2 = PC \cdot PD
* したがって、PAPB=PCPDPA \cdot PB = PC \cdot PD が成り立つ。
* PA・PB = PC・PDが成立するので、方べきの定理の逆より、4点A, B, C, Dは同一円周上にある。

3. 最終的な答え

4点A, B, C, Dは1つの円周上にある。

「幾何学」の関連問題

ベクトル $\vec{a} = (2, 2, 1)$ と $\vec{b} = (4, 4, 2)$ が与えられたとき、これらのベクトルの内積 $\vec{a} \cdot \vec{b}$ と、ベク...

ベクトル内積ベクトルのなす角
2025/7/1

三角形の辺の長さ$a = 4\sqrt{2}$、辺の長さ$c = 8$、角$C = 45^\circ$が与えられたとき、他の角$A$の値を求める問題です。

正弦定理三角形角度
2025/7/1

三角形ABCがあり、AB=2、BC=√6、CA=3である。円Oは点Aを通り、点Bで直線BCに接している。また、円Oは辺ACとA以外の交点Dを持つ。さらに、∠Aの二等分線と辺BCとの交点をEとする。 (...

三角形相似接線角の二等分線メネラウスの定理
2025/7/1

三角形ABCにおいて、$b = 2\sqrt{3}$, $A = 60^\circ$, $B = 45^\circ$が与えられている。残りの辺の長さ$a, c$と角の大きさ$C$を求める。

三角形正弦定理角度辺の長さ
2025/7/1

正五角形ABCDEがある。(1)5個の頂点のうち3点を結んで三角形を作るとき、三角形は何個できるか。(2)対角線は何本あるか。

正五角形組み合わせ対角線図形
2025/7/1

三角形ABCにおいて、辺a=6, c=2√3, 角A=120°が与えられているとき、残りの辺と角の大きさを求める問題です。

三角比余弦定理正弦定理三角形
2025/7/1

三角形ABCにおいて、以下の条件が与えられています。 (1) $b = 2\sqrt{3}, A = 60^\circ, B = 45^\circ$ 残りの辺の長さ $a, c$ と角 $C$ の大き...

三角形正弦定理余弦定理三角比
2025/7/1

2つのベクトル $\vec{a}$ と $\vec{b}$ が与えられたとき、それらの内積 $\vec{a} \cdot \vec{b}$ と、それらがなす角 $\theta$ を求めます。問題には4...

ベクトル内積角度
2025/7/1

正七角形について、以下の個数を求めます。 (1) 3個の頂点を結んでできる三角形の個数 (2) 対角線の本数 (3) 正七角形と2辺を共有する三角形の個数

多角形組み合わせ対角線三角形
2025/7/1

三角形ABCにおいて、点Oが外心であるとき、与えられた角度から角xの大きさを求める問題です。 (1)では、$\angle BAC = 25^\circ$, $\angle ACB = 35^\circ...

三角形外心角度二等辺三角形
2025/7/1