(8) $0^\circ \le \theta \le 180^\circ$ のとき、$\sin \theta = \frac{\sqrt{3}}{2}$ を満たす $\theta$ を求めよ。 (9) $\triangle ABC$ において、$b = \sqrt{6}$, $A = 45^\circ$, $B = 60^\circ$ のとき、$a$ を求めよ。 (10) $\triangle ABC$ において、$b = \sqrt{3}$, $c = 2$, $A = 150^\circ$ のとき、$a$ を求めよ。

幾何学三角比正弦定理余弦定理三角形
2025/3/10

1. 問題の内容

(8) 0θ1800^\circ \le \theta \le 180^\circ のとき、sinθ=32\sin \theta = \frac{\sqrt{3}}{2} を満たす θ\theta を求めよ。
(9) ABC\triangle ABC において、b=6b = \sqrt{6}, A=45A = 45^\circ, B=60B = 60^\circ のとき、aa を求めよ。
(10) ABC\triangle ABC において、b=3b = \sqrt{3}, c=2c = 2, A=150A = 150^\circ のとき、aa を求めよ。

2. 解き方の手順

(8)
sinθ=32\sin \theta = \frac{\sqrt{3}}{2} となる θ\theta0θ1800^\circ \le \theta \le 180^\circ の範囲で探します。
sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2} であることは既知です。
また、sin(180θ)=sinθ\sin(180^\circ - \theta) = \sin \theta の関係から、sin(18060)=sin120=32\sin (180^\circ - 60^\circ) = \sin 120^\circ = \frac{\sqrt{3}}{2} となります。
したがって、θ=60\theta = 60^\circθ=120\theta = 120^\circ が解となります。
(9)
正弦定理 asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B} を用います。
asin45=6sin60\frac{a}{\sin 45^\circ} = \frac{\sqrt{6}}{\sin 60^\circ}
a=6sin45sin60=61232=323=2a = \frac{\sqrt{6} \sin 45^\circ}{\sin 60^\circ} = \frac{\sqrt{6} \cdot \frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2}} = \frac{\sqrt{3} \cdot 2}{\sqrt{3}} = 2
(10)
余弦定理 a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A を用います。
a2=(3)2+22232cos150a^2 = (\sqrt{3})^2 + 2^2 - 2 \cdot \sqrt{3} \cdot 2 \cos 150^\circ
a2=3+443(32)a^2 = 3 + 4 - 4\sqrt{3} \cdot (-\frac{\sqrt{3}}{2})
a2=7+4332=7+432=7+6=13a^2 = 7 + 4\sqrt{3} \cdot \frac{\sqrt{3}}{2} = 7 + 4 \cdot \frac{3}{2} = 7 + 6 = 13
a=13a = \sqrt{13}
a>0a > 0 より、a=13a = \sqrt{13}

3. 最終的な答え

(8)
θ=60,120\theta = 60^\circ, 120^\circ
(9)
a=2a = 2
(10)
a=13a = \sqrt{13}

「幾何学」の関連問題

円に内接する四角形と、円の接線に関する問題です。$∠C = 78°$、接線ATと弦ABのなす角が$35°$であるとき、$∠x$の大きさを求めます。

四角形接線角度
2025/7/16

点Pから円に2本の直線を引き、それぞれ点A, Bと点C, Dで交わらせています。PA = 5, AB = 6, OD = OC = 4 (円の半径)であるとき、PC = xの値を求めよ。

方べきの定理二次方程式
2025/7/16

鉄塔の先端の真下から水平に20m離れた地点から鉄塔の先端を見上げたところ、水平面とのなす角が40°でした。目の高さを1.6mとして、鉄塔の高さを求めます。ただし、小数第2位を四捨五入します。

三角比tan高さ角度
2025/7/16

傾斜角が19度の坂を100m登ったとき、水平方向に何m進むことになるかを求める問題です。1m未満を四捨五入します。

三角関数cos斜辺水平距離角度
2025/7/16

直角三角形ABCにおいて、辺ACの長さを、辺ABと辺BCを使って表す式を完成させる問題です。空欄にsin, cos, tanの中から適切なものを入れます。

直角三角形三角比sincostan辺の長さ
2025/7/16

2つの直角三角形が与えられています。それぞれの図において、角$\theta$のおおよその大きさを、三角比の表を用いて求めます。

三角比直角三角形角度
2025/7/16

2つの平面 $x+2y+kz-3=0$ と $x+(k+2)y-3z-5=0$ が垂直になるように、定数 $k$ の値を求めます。

ベクトル平面垂直法線ベクトル内積
2025/7/16

(2) 2点 $(3, 1)$, $(9, -7)$ を直径の両端とする円の方程式を求めよ。 (3) 3点 $(5, -1)$, $(4, 6)$, $(1, 7)$ を通る円 $C$ の方程式を求め...

円の方程式座標平面中心半径
2025/7/16

一辺の長さが3の正四面体OABCがあり、辺OC上に$OD = 1$となる点D、辺OB上に$OE = \frac{3}{4}$となる点Eをとる。 (1) $\triangle ABC$の外接円の半径を求...

正四面体空間図形体積三角比外接円三平方の定理余弦定理
2025/7/16

$0^\circ \le \theta \le 180^\circ$ のとき、$\cos \theta = -\frac{3}{5}$ が与えられています。このとき、$\sin \theta$ と $...

三角関数三角比sincostan角度
2025/7/16