二次方程式 $x^2 + 3x = 0$ を解きます。

代数学二次方程式因数分解方程式解の公式
2025/3/31

1. 問題の内容

二次方程式 x2+3x=0x^2 + 3x = 0 を解きます。

2. 解き方の手順

まず、与えられた方程式を因数分解します。
xx が共通因数なので、xx でくくります。
x(x+3)=0x(x + 3) = 0
次に、因数の積が 0 となる条件を利用します。
x(x+3)=0x(x + 3) = 0 が成り立つのは、x=0x = 0 または x+3=0x + 3 = 0 の場合です。
x+3=0x + 3 = 0 の場合、x=3x = -3 となります。

3. 最終的な答え

x=0,3x = 0, -3

「代数学」の関連問題

与えられた式が $x$ に関する恒等式であるとき、定数 $A$, $B$, $C$ の値を求める問題です。 与えられた式は以下の通りです。 $\frac{3x^2-2x+4}{(x+1)(x-1)^2...

恒等式部分分数分解連立方程式
2025/5/3

問題は、与えられた式を展開し、$x$ について降べきの順に整理することです。問題は2つあります。 (1) $(x^2+2ax+1)(x-2a)$ (2) $(ax-1)(x^2)$

展開多項式降べきの順
2025/5/3

(1) $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$ の公式を利用して、$a^3 + b^3 + c^3 - 3abc$ を因数分解する。 (2) $x^3 - 3xy + y^3...

因数分解多項式式の展開公式
2025/5/3

問題は3つあります。 (5) 次の集合を、要素を書き並べて表しなさい。 (1) 1以上20以下の3の倍数の集合 $A$ (2) 16の正の約数の集合 $B$ (6) 次の集合のうち、$...

集合集合の要素部分集合補集合
2025/5/3

与えられた式 $x^3 - 3xy + y^3 + 1$ を因数分解する問題です。

因数分解多項式公式
2025/5/3

$a^3 + b^3 = (a+b)^3 - 3ab(a+b)$ を用いて、$a^3 + b^3 + c^3 - 3abc$ を因数分解する問題です。

因数分解式の展開多項式
2025/5/3

与えられた2変数多項式 $x^2 + 5xy + 6y^2 - 2x - 7y - 3$ を因数分解せよ。

多項式因数分解2変数
2025/5/3

$(x^2+6x)^2$ を展開せよ。

展開多項式公式
2025/5/3

与えられた2つの式を因数分解する。 (1) $x^2 - (2a-3)x + a^2 - 3a + 2$ (3) $x^2 - 4x - y^2 - 6y - 5$

因数分解二次式平方完成
2025/5/3

次の等式が $x$ についての恒等式となるように、定数 $a, b$ の値を求めよ。 $\frac{3x-1}{(x-2)(x+3)} = \frac{a}{x-2} + \frac{b}{x+3}$

分数式恒等式部分分数分解連立方程式
2025/5/3