定積分 $\int_{0}^{\frac{\sqrt{3}}{2}} \sqrt{1-x^2} dx$ の値を求めます。解析学定積分置換積分三角関数2025/7/11. 問題の内容定積分 ∫0321−x2dx\int_{0}^{\frac{\sqrt{3}}{2}} \sqrt{1-x^2} dx∫0231−x2dx の値を求めます。2. 解き方の手順まず、x=sinθx = \sin\thetax=sinθ と置換します。このとき、dx=cosθdθdx = \cos\theta d\thetadx=cosθdθ となります。積分の範囲も変わります。x=0x = 0x=0 のとき、sinθ=0\sin\theta = 0sinθ=0 より θ=0\theta = 0θ=0 です。x=32x = \frac{\sqrt{3}}{2}x=23 のとき、sinθ=32\sin\theta = \frac{\sqrt{3}}{2}sinθ=23 より θ=π3\theta = \frac{\pi}{3}θ=3π です。したがって、∫0321−x2dx=∫0π31−sin2θcosθdθ=∫0π3cos2θdθ\int_{0}^{\frac{\sqrt{3}}{2}} \sqrt{1-x^2} dx = \int_{0}^{\frac{\pi}{3}} \sqrt{1-\sin^2\theta} \cos\theta d\theta = \int_{0}^{\frac{\pi}{3}} \cos^2\theta d\theta∫0231−x2dx=∫03π1−sin2θcosθdθ=∫03πcos2θdθcos2θ=1+cos(2θ)2\cos^2\theta = \frac{1+\cos(2\theta)}{2}cos2θ=21+cos(2θ) を用いて、∫0π3cos2θdθ=∫0π31+cos(2θ)2dθ=12∫0π3(1+cos(2θ))dθ\int_{0}^{\frac{\pi}{3}} \cos^2\theta d\theta = \int_{0}^{\frac{\pi}{3}} \frac{1+\cos(2\theta)}{2} d\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} (1+\cos(2\theta)) d\theta∫03πcos2θdθ=∫03π21+cos(2θ)dθ=21∫03π(1+cos(2θ))dθ∫0π3(1+cos(2θ))dθ=[θ+12sin(2θ)]0π3=π3+12sin(2π3)−0−12sin(0)=π3+12⋅32=π3+34\int_{0}^{\frac{\pi}{3}} (1+\cos(2\theta)) d\theta = \left[\theta + \frac{1}{2}\sin(2\theta)\right]_{0}^{\frac{\pi}{3}} = \frac{\pi}{3} + \frac{1}{2}\sin(\frac{2\pi}{3}) - 0 - \frac{1}{2}\sin(0) = \frac{\pi}{3} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\pi}{3} + \frac{\sqrt{3}}{4}∫03π(1+cos(2θ))dθ=[θ+21sin(2θ)]03π=3π+21sin(32π)−0−21sin(0)=3π+21⋅23=3π+43よって、12∫0π3(1+cos(2θ))dθ=12(π3+34)=π6+38\frac{1}{2} \int_{0}^{\frac{\pi}{3}} (1+\cos(2\theta)) d\theta = \frac{1}{2} \left(\frac{\pi}{3} + \frac{\sqrt{3}}{4}\right) = \frac{\pi}{6} + \frac{\sqrt{3}}{8}21∫03π(1+cos(2θ))dθ=21(3π+43)=6π+833. 最終的な答えπ6+38\frac{\pi}{6} + \frac{\sqrt{3}}{8}6π+83