コインを1枚投げる試行において、表(H)が出たら1、裏(T)が出たら-1という確率変数 $Y$ を考える。このとき、累積分布関数 $F_Y(x)$ の $x=0$ のときの値 $F_Y(0)$ を分数で答える問題です。

確率論・統計学確率変数累積分布関数確率
2025/7/2

1. 問題の内容

コインを1枚投げる試行において、表(H)が出たら1、裏(T)が出たら-1という確率変数 YY を考える。このとき、累積分布関数 FY(x)F_Y(x)x=0x=0 のときの値 FY(0)F_Y(0) を分数で答える問題です。

2. 解き方の手順

累積分布関数 FY(x)F_Y(x) は、YxY \le x となる確率を表します。つまり、FY(x)=P(Yx)F_Y(x) = P(Y \le x) です。
x=0x=0 の場合、FY(0)=P(Y0)F_Y(0) = P(Y \le 0) となります。
YY は1か-1の値しか取らないので、Y0Y \le 0 となるのは Y=1Y = -1 のときだけです。
Y=1Y = -1 となるのは裏(T)が出たときなので、その確率は 12\frac{1}{2} です。
したがって、FY(0)=12F_Y(0) = \frac{1}{2} です。

3. 最終的な答え

(1) = 1
(2) = 2

「確率論・統計学」の関連問題

袋の中に赤玉が3個、白玉が5個入っている。袋から1個ずつ、合計4個の玉を取り出す。ただし、取り出した玉は元に戻さない。3個目以降に初めて赤玉を取り出す確率を求めよ。

確率期待値場合の数確率の計算
2025/7/3

袋Aには白玉3個と黒玉5個、袋Bには白玉2個と黒玉2個が入っている。まず袋Aから2個を取り出して袋Bに入れ、次に袋Bから2個を取り出して袋Aに戻す。このとき、袋Aの白玉の個数が初めより増加する確率を求...

確率組み合わせ事象の確率条件付き確率
2025/7/3

問題は2つあります。 1. データの分散が25であるとき、標準偏差を求める。

統計分散標準偏差偏差値
2025/7/3

与えられたデータ$\{1, 1, 1, 1, 1\}$の分散を求める問題です。

分散統計データの分析
2025/7/3

A班には大人5人、子供4人、B班には大人4人、子供4人がいます。このとき、大人3人、子供2人を選ぶ方法について、以下の2つの場合についての場合の数を求めます。 (1) A班だけから選ぶ場合。 (2) ...

組み合わせ場合の数二項係数
2025/7/3

赤玉2個、白玉3個、青玉5個が入った袋から、3個の玉を同時に取り出すとき、3個とも同じ色である確率を求めよ。

確率組み合わせ場合の数玉取り出し
2025/7/3

7人を、区別できる2つの部屋A、Bに入れる方法と、区別できない2つの部屋に入れる方法をそれぞれ求める問題です。ただし、それぞれの部屋には少なくとも1人は入るものとします。

組み合わせ場合の数重複組み合わせ
2025/7/3

確率変数 $X$ の確率分布が与えられています。$X$ の期待値 $E(X)$、分散 $V(X)$、および標準偏差 $\sigma(X)$ を計算します。ただし、$x$ は未知数です。

確率分布期待値分散標準偏差確率変数
2025/7/3

大人2人と子ども6人が円形のテーブルの周りに座る。 (1) 大人が向かい合って座る座り方は何通りあるか。 (2) 大人が隣り合って座る座り方は何通りあるか。

順列円順列組み合わせ
2025/7/3

1, 2, 3, 4 の数字が書かれた玉がそれぞれたくさんあるとき、重複を許して 6 個の玉を取る組み合わせの総数を求めます。

組み合わせ重複組み合わせ場合の数
2025/7/3