コインを1枚投げる試行を考え、表を1、裏を-1とする確率変数 $Y$ の累積分布関数 $F_Y(x)$ を定義する。このとき、$F_Y(0)$ の値を分数で求める問題です。

確率論・統計学確率変数累積分布関数確率コイン
2025/7/2

1. 問題の内容

コインを1枚投げる試行を考え、表を1、裏を-1とする確率変数 YY の累積分布関数 FY(x)F_Y(x) を定義する。このとき、FY(0)F_Y(0) の値を分数で求める問題です。

2. 解き方の手順

累積分布関数 FY(x)F_Y(x) は、YxY \le x となる確率を表します。つまり、
FY(x)=P(Yx)F_Y(x) = P(Y \le x)
x=0x = 0 のとき、FY(0)=P(Y0)F_Y(0) = P(Y \le 0) を求める必要があります。
YY は 1 (表) または -1 (裏) の値をとるので、Y0Y \le 0 となるのは Y=1Y = -1 の場合、つまり裏が出た場合です。コインを1枚投げる試行において、表が出る確率と裏が出る確率は等しく 1/21/2 であると仮定します。したがって、P(Y=1)=1/2P(Y = -1) = 1/2 となります。
ゆえに、FY(0)=P(Y0)=P(Y=1)=1/2F_Y(0) = P(Y \le 0) = P(Y = -1) = 1/2 となります。

3. 最終的な答え

(1) = 1
(2) = 2

「確率論・統計学」の関連問題

赤玉2個、白玉3個、青玉5個が入った袋から、3個の玉を同時に取り出すとき、3個とも同じ色である確率を求めよ。

確率組み合わせ場合の数玉取り出し
2025/7/3

7人を、区別できる2つの部屋A、Bに入れる方法と、区別できない2つの部屋に入れる方法をそれぞれ求める問題です。ただし、それぞれの部屋には少なくとも1人は入るものとします。

組み合わせ場合の数重複組み合わせ
2025/7/3

確率変数 $X$ の確率分布が与えられています。$X$ の期待値 $E(X)$、分散 $V(X)$、および標準偏差 $\sigma(X)$ を計算します。ただし、$x$ は未知数です。

確率分布期待値分散標準偏差確率変数
2025/7/3

大人2人と子ども6人が円形のテーブルの周りに座る。 (1) 大人が向かい合って座る座り方は何通りあるか。 (2) 大人が隣り合って座る座り方は何通りあるか。

順列円順列組み合わせ
2025/7/3

1, 2, 3, 4 の数字が書かれた玉がそれぞれたくさんあるとき、重複を許して 6 個の玉を取る組み合わせの総数を求めます。

組み合わせ重複組み合わせ場合の数
2025/7/3

"SOCCER" の6文字を一列に並べるとき、SとRがこの順に並ぶ並べ方は何通りあるかを求める問題です。

順列場合の数組み合わせ
2025/7/3

女子7人と男子5人の中から4人を選ぶ場合の数を求める問題です。ただし、以下の3つの条件があります。 (1) 特定の2人A, Bを必ず選ぶ。 (2) 特定の女子Pと特定の男子Qを含めて、女子2人、男子2...

組み合わせ順列組み合わせ場合の数
2025/7/3

袋Aには赤球2個と白球1個が入っており、袋Bには赤球1個と白球3個が入っている。袋Aから1個の球を取り出して袋Bに入れ、よく混ぜた後、袋Bから1個の球を取り出して袋Aに入れる。このとき、以下の確率を求...

確率条件付き確率事象期待値
2025/7/3

袋の中に赤玉5個、白玉3個が入っている。この中から同時に3個を取り出すとき、以下の問いに答えよ。ただし、玉はすべて区別するものとする。 (1) 3個が同じ色であるような取り出し方は何通りあるか。 (2...

組み合わせ確率場合の数
2025/7/3

(1) 10チームが総当たり戦(リーグ戦)を行うとき、試合総数は何通りあるか。 (2) 1枚の硬貨を7回投げるとき、表がちょうど4回出る場合は何通りあるか。

組み合わせ確率総当たり戦二項係数
2025/7/3