$a = \frac{4}{3\sqrt{2} - \sqrt{10}}$ とする。 (1) $a$ の分母を有理化し、簡単にせよ。 (2) $a + \frac{2}{a}$ の値を求めよ。また、$a^2 + \frac{4}{a^2}$ の値を求めよ。 (3) $\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1}$ の値を求めよ。

代数学分母の有理化式の計算平方根
2025/7/2

1. 問題の内容

a=43210a = \frac{4}{3\sqrt{2} - \sqrt{10}} とする。
(1) aa の分母を有理化し、簡単にせよ。
(2) a+2aa + \frac{2}{a} の値を求めよ。また、a2+4a2a^2 + \frac{4}{a^2} の値を求めよ。
(3) a416a28a21\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1} の値を求めよ。

2. 解き方の手順

(1) aa の分母を有理化する。
a=43210=4(32+10)(3210)(32+10)a = \frac{4}{3\sqrt{2} - \sqrt{10}} = \frac{4(3\sqrt{2} + \sqrt{10})}{(3\sqrt{2} - \sqrt{10})(3\sqrt{2} + \sqrt{10})}
=4(32+10)(32)2(10)2=4(32+10)1810=4(32+10)8=32+102= \frac{4(3\sqrt{2} + \sqrt{10})}{(3\sqrt{2})^2 - (\sqrt{10})^2} = \frac{4(3\sqrt{2} + \sqrt{10})}{18 - 10} = \frac{4(3\sqrt{2} + \sqrt{10})}{8} = \frac{3\sqrt{2} + \sqrt{10}}{2}
(2) a+2aa + \frac{2}{a} を求める。
2a=232+102=432+10=4(3210)(32+10)(3210)=4(3210)1810=4(3210)8=32102\frac{2}{a} = \frac{2}{\frac{3\sqrt{2} + \sqrt{10}}{2}} = \frac{4}{3\sqrt{2} + \sqrt{10}} = \frac{4(3\sqrt{2} - \sqrt{10})}{(3\sqrt{2} + \sqrt{10})(3\sqrt{2} - \sqrt{10})} = \frac{4(3\sqrt{2} - \sqrt{10})}{18 - 10} = \frac{4(3\sqrt{2} - \sqrt{10})}{8} = \frac{3\sqrt{2} - \sqrt{10}}{2}
a+2a=32+102+32102=32+10+32102=622=32a + \frac{2}{a} = \frac{3\sqrt{2} + \sqrt{10}}{2} + \frac{3\sqrt{2} - \sqrt{10}}{2} = \frac{3\sqrt{2} + \sqrt{10} + 3\sqrt{2} - \sqrt{10}}{2} = \frac{6\sqrt{2}}{2} = 3\sqrt{2}
a2+4a2a^2 + \frac{4}{a^2} を求める。
(a+2a)2=a2+2(a)(2a)+4a2=a2+4+4a2(a + \frac{2}{a})^2 = a^2 + 2(a)(\frac{2}{a}) + \frac{4}{a^2} = a^2 + 4 + \frac{4}{a^2}
a2+4a2=(a+2a)24=(32)24=9(2)4=184=14a^2 + \frac{4}{a^2} = (a + \frac{2}{a})^2 - 4 = (3\sqrt{2})^2 - 4 = 9(2) - 4 = 18 - 4 = 14
(3) a416a28a21\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1} を求める。
a416=(a2)242=(a24)(a2+4)a^4 - 16 = (a^2)^2 - 4^2 = (a^2 - 4)(a^2 + 4)
a28a21=a2+4a212a21=1412a21=1312a2a^2 - \frac{8}{a^2} - 1 = a^2 + \frac{4}{a^2} - \frac{12}{a^2} - 1 = 14 - \frac{12}{a^2} - 1 = 13 - \frac{12}{a^2}
a416a28a21=(a24)(a2+4)a28a21=(a24)(a2+4)a4a28a2\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1} = \frac{(a^2 - 4)(a^2 + 4)}{a^2 - \frac{8}{a^2} - 1} = \frac{(a^2 - 4)(a^2 + 4)}{\frac{a^4 - a^2 - 8}{a^2}}
a2=(32+102)2=(32)2+2(32)(10)+(10)24=18+620+104=28+1254=7+35a^2 = (\frac{3\sqrt{2} + \sqrt{10}}{2})^2 = \frac{(3\sqrt{2})^2 + 2(3\sqrt{2})(\sqrt{10}) + (\sqrt{10})^2}{4} = \frac{18 + 6\sqrt{20} + 10}{4} = \frac{28 + 12\sqrt{5}}{4} = 7 + 3\sqrt{5}
a4=(7+35)2=49+425+9(5)=49+425+45=94+425a^4 = (7 + 3\sqrt{5})^2 = 49 + 42\sqrt{5} + 9(5) = 49 + 42\sqrt{5} + 45 = 94 + 42\sqrt{5}
a4a28=(94+425)(7+35)8=9478+42535=79+395a^4 - a^2 - 8 = (94 + 42\sqrt{5}) - (7 + 3\sqrt{5}) - 8 = 94 - 7 - 8 + 42\sqrt{5} - 3\sqrt{5} = 79 + 39\sqrt{5}
a416a28a21=a2(a24)(a2+4)a4a28=(7+35)((7+35)4)((7+35)+4)79+395=(7+35)(3+35)(11+35)79+395=(7+35)(33+95+335+45)79+395=(7+35)(78+425)79+395=546+2945+2345+126(5)79+395=546+780+528579+395=1326+528579+395=6(221+885)79+395=6(221+885)(79395)(79+395)(79395)=6(221(79)221(39)5+88(79)588(39)(5))792(392)(5)=6(1745986195+6952517160)62411521(5)=6(1745917160(86196952)5)62417605=6(29916675)1364\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1} = \frac{a^2(a^2 - 4)(a^2 + 4)}{a^4 - a^2 - 8} = \frac{(7 + 3\sqrt{5})((7 + 3\sqrt{5}) - 4)((7 + 3\sqrt{5}) + 4)}{79 + 39\sqrt{5}} = \frac{(7 + 3\sqrt{5})(3 + 3\sqrt{5})(11 + 3\sqrt{5})}{79 + 39\sqrt{5}} = \frac{(7 + 3\sqrt{5})(33 + 9\sqrt{5} + 33\sqrt{5} + 45)}{79 + 39\sqrt{5}} = \frac{(7 + 3\sqrt{5})(78 + 42\sqrt{5})}{79 + 39\sqrt{5}} = \frac{546 + 294\sqrt{5} + 234\sqrt{5} + 126(5)}{79 + 39\sqrt{5}} = \frac{546 + 780 + 528\sqrt{5}}{79 + 39\sqrt{5}} = \frac{1326 + 528\sqrt{5}}{79 + 39\sqrt{5}} = \frac{6(221 + 88\sqrt{5})}{79 + 39\sqrt{5}} = \frac{6(221 + 88\sqrt{5})(79 - 39\sqrt{5})}{(79 + 39\sqrt{5})(79 - 39\sqrt{5})} = \frac{6(221(79) - 221(39)\sqrt{5} + 88(79)\sqrt{5} - 88(39)(5))}{79^2 - (39^2)(5)} = \frac{6(17459 - 8619\sqrt{5} + 6952\sqrt{5} - 17160)}{6241 - 1521(5)} = \frac{6(17459 - 17160 - (8619 - 6952)\sqrt{5})}{6241 - 7605} = \frac{6(299 - 1667\sqrt{5})}{-1364}
別のやり方:
a416a28a21=(a24)(a2+4)a28a21=(a2a)(a+2a)a2(a2+4a212a2)a2(a2+4a212a21)=(a2a)(32)(14127+35)13=[(3/2)2+10(3/2)2+10]32(7+35)(14(7+35)1279+395\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1} = \frac{(a^2-4)(a^2+4)}{a^2 - \frac{8}{a^2} - 1} = \frac{(a - \frac{2}{a})(a + \frac{2}{a})a^2(a^2 + \frac{4}{a^2} - \frac{12}{a^2})}{a^2(a^2 + \frac{4}{a^2} - \frac{12}{a^2} - 1)} = \frac{(a - \frac{2}{a})(3\sqrt{2})(14 - \frac{12}{7 + 3\sqrt{5}})}{13} = \frac{[(3/2)\sqrt{2} + \sqrt{10} -(3/2)\sqrt{2} + \sqrt{10}]3\sqrt{2}(7 + 3\sqrt{5})(14(7 + 3\sqrt{5}) - 12}{79 + 39\sqrt{5}}
a2a=32+10232102=32+1032+102=2102=10a - \frac{2}{a} = \frac{3\sqrt{2} + \sqrt{10}}{2} - \frac{3\sqrt{2} - \sqrt{10}}{2} = \frac{3\sqrt{2} + \sqrt{10} - 3\sqrt{2} + \sqrt{10}}{2} = \frac{2\sqrt{10}}{2} = \sqrt{10}
(a2+4)(a24)a4a28a2=(7+35+4)(7+354)(7+35)27358(7+35)\frac{(a^2 +4)(a^2-4)}{\frac{a^4-a^2-8}{a^2}} = \frac{(7+3\sqrt{5} +4)(7+3\sqrt{5}-4)}{\frac{(7+3\sqrt{5})^2-7-3\sqrt{5}-8}{(7+3\sqrt{5})}}
(3)
a416a28a21=a2+4a2=(a24)(a2+4)a4a28a2\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1} = a^2 + \frac{4}{a^2} = \frac{(a^2 - 4)(a^2 + 4)}{\frac{a^4-a^2-8}{a^2}}

3. 最終的な答え

(1) a=32+102a = \frac{3\sqrt{2} + \sqrt{10}}{2}
(2) a+2a=32a + \frac{2}{a} = 3\sqrt{2}, a2+4a2=14a^2 + \frac{4}{a^2} = 14
(3) a416a28a21\frac{a^4 - 16}{a^2 - \frac{8}{a^2} - 1}