与えられた10個の数式(累乗、指数、対数を含む)の値を求める問題です。代数学指数対数累乗計算2025/7/21. 問題の内容与えられた10個の数式(累乗、指数、対数を含む)の値を求める問題です。2. 解き方の手順(1) 8÷163×326\sqrt{8} \div \sqrt[3]{16} \times \sqrt[6]{32}8÷316×6328=812=(23)12=232\sqrt{8} = 8^{\frac{1}{2}} = (2^3)^{\frac{1}{2}} = 2^{\frac{3}{2}}8=821=(23)21=223163=1613=(24)13=243\sqrt[3]{16} = 16^{\frac{1}{3}} = (2^4)^{\frac{1}{3}} = 2^{\frac{4}{3}}316=1631=(24)31=234326=3216=(25)16=256\sqrt[6]{32} = 32^{\frac{1}{6}} = (2^5)^{\frac{1}{6}} = 2^{\frac{5}{6}}632=3261=(25)61=265よって、232÷243×256=232−43+56=29−8+56=266=21=22^{\frac{3}{2}} \div 2^{\frac{4}{3}} \times 2^{\frac{5}{6}} = 2^{\frac{3}{2} - \frac{4}{3} + \frac{5}{6}} = 2^{\frac{9 - 8 + 5}{6}} = 2^{\frac{6}{6}} = 2^1 = 2223÷234×265=223−34+65=269−8+5=266=21=2(2) 232×352×6−122^{\frac{3}{2}} \times 3^{\frac{5}{2}} \times 6^{-\frac{1}{2}}223×325×6−21232×352×6−12=232×352×(2×3)−12=232×352×2−12×3−12=232−12×352−12=21×32=2×9=182^{\frac{3}{2}} \times 3^{\frac{5}{2}} \times 6^{-\frac{1}{2}} = 2^{\frac{3}{2}} \times 3^{\frac{5}{2}} \times (2 \times 3)^{-\frac{1}{2}} = 2^{\frac{3}{2}} \times 3^{\frac{5}{2}} \times 2^{-\frac{1}{2}} \times 3^{-\frac{1}{2}} = 2^{\frac{3}{2} - \frac{1}{2}} \times 3^{\frac{5}{2} - \frac{1}{2}} = 2^1 \times 3^2 = 2 \times 9 = 18223×325×6−21=223×325×(2×3)−21=223×325×2−21×3−21=223−21×325−21=21×32=2×9=18(3) (912)32×81−14(9^{\frac{1}{2}})^{\frac{3}{2}} \times 81^{-\frac{1}{4}}(921)23×81−41(912)32=912×32=934=(32)34=332(9^{\frac{1}{2}})^{\frac{3}{2}} = 9^{\frac{1}{2} \times \frac{3}{2}} = 9^{\frac{3}{4}} = (3^2)^{\frac{3}{4}} = 3^{\frac{3}{2}}(921)23=921×23=943=(32)43=32381−14=(34)−14=3−1=1381^{-\frac{1}{4}} = (3^4)^{-\frac{1}{4}} = 3^{-1} = \frac{1}{3}81−41=(34)−41=3−1=31よって、332×13=332−1=312=33^{\frac{3}{2}} \times \frac{1}{3} = 3^{\frac{3}{2} - 1} = 3^{\frac{1}{2}} = \sqrt{3}323×31=323−1=321=3(4) 642÷4−2×8−16364^2 \div 4^{-2} \times 8^{-\frac{16}{3}}642÷4−2×8−316642=(26)2=21264^2 = (2^6)^2 = 2^{12}642=(26)2=2124−2=(22)−2=2−44^{-2} = (2^2)^{-2} = 2^{-4}4−2=(22)−2=2−48−163=(23)−163=2−168^{-\frac{16}{3}} = (2^3)^{-\frac{16}{3}} = 2^{-16}8−316=(23)−316=2−16よって、212÷2−4×2−16=212−(−4)−16=212+4−16=20=12^{12} \div 2^{-4} \times 2^{-16} = 2^{12 - (-4) - 16} = 2^{12 + 4 - 16} = 2^0 = 1212÷2−4×2−16=212−(−4)−16=212+4−16=20=1(5) log28\log_2{\sqrt{8}}log288=812=(23)12=232\sqrt{8} = 8^{\frac{1}{2}} = (2^3)^{\frac{1}{2}} = 2^{\frac{3}{2}}8=821=(23)21=223log28=log2232=32\log_2{\sqrt{8}} = \log_2{2^{\frac{3}{2}}} = \frac{3}{2}log28=log2223=23(6) 8log258^{\log_2{5}}8log258log25=(23)log25=23log25=2log253=53=1258^{\log_2{5}} = (2^3)^{\log_2{5}} = 2^{3 \log_2{5}} = 2^{\log_2{5^3}} = 5^3 = 1258log25=(23)log25=23log25=2log253=53=125(7) log575−log515\log_5{75} - \log_5{15}log575−log515log575−log515=log57515=log55=1\log_5{75} - \log_5{15} = \log_5{\frac{75}{15}} = \log_5{5} = 1log575−log515=log51575=log55=1(8) log35−12log310+log318\log_3{\sqrt{5}} - \frac{1}{2} \log_3{10} + \log_3{\sqrt{18}}log35−21log310+log318log35−12log310+log318=log35−log310+log318=log35×1810=log35×1810=log35×1810=log39=log33=1\log_3{\sqrt{5}} - \frac{1}{2} \log_3{10} + \log_3{\sqrt{18}} = \log_3{\sqrt{5}} - \log_3{\sqrt{10}} + \log_3{\sqrt{18}} = \log_3{\frac{\sqrt{5} \times \sqrt{18}}{\sqrt{10}}} = \log_3{\frac{\sqrt{5 \times 18}}{\sqrt{10}}} = \log_3{\sqrt{\frac{5 \times 18}{10}}} = \log_3{\sqrt{9}} = \log_3{3} = 1log35−21log310+log318=log35−log310+log318=log3105×18=log3105×18=log3105×18=log39=log33=1(9) (log163−log49)(log316+log94)(\log_{16}{3} - \log_4{9})(\log_3{16} + \log_9{4})(log163−log49)(log316+log94)log163=log23log216=log234\log_{16}{3} = \frac{\log_2{3}}{\log_2{16}} = \frac{\log_2{3}}{4}log163=log216log23=4log23log49=log29log24=log2322=2log232=log23\log_4{9} = \frac{\log_2{9}}{\log_2{4}} = \frac{\log_2{3^2}}{2} = \frac{2\log_2{3}}{2} = \log_2{3}log49=log24log29=2log232=22log23=log23log316=log216log23=4log23\log_3{16} = \frac{\log_2{16}}{\log_2{3}} = \frac{4}{\log_2{3}}log316=log23log216=log234log94=log34log39=log3222=2log322=log32=log22log23=1log23\log_9{4} = \frac{\log_3{4}}{\log_3{9}} = \frac{\log_3{2^2}}{2} = \frac{2\log_3{2}}{2} = \log_3{2} = \frac{\log_2{2}}{\log_2{3}} = \frac{1}{\log_2{3}}log94=log39log34=2log322=22log32=log32=log23log22=log231(log234−log23)(4log23+1log23)=(14−1)log23×(4+1log23)=−34log23×5log23=−34×5=−154(\frac{\log_2{3}}{4} - \log_2{3})(\frac{4}{\log_2{3}} + \frac{1}{\log_2{3}}) = (\frac{1}{4} - 1)\log_2{3} \times (\frac{4+1}{\log_2{3}}) = -\frac{3}{4} \log_2{3} \times \frac{5}{\log_2{3}} = -\frac{3}{4} \times 5 = -\frac{15}{4}(4log23−log23)(log234+log231)=(41−1)log23×(log234+1)=−43log23×log235=−43×5=−415(10) (323−223)(323+313×223+243)(3+2)(3^{\frac{2}{3}} - 2^{\frac{2}{3}})(3^{\frac{2}{3}} + 3^{\frac{1}{3}} \times 2^{\frac{2}{3}} + 2^{\frac{4}{3}})(3+2)(332−232)(332+331×232+234)(3+2)これは a3−b3=(a−b)(a2+ab+b2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)a3−b3=(a−b)(a2+ab+b2) の形に似ています。ここで、a=313a = 3^{\frac{1}{3}}a=331、b=213b = 2^{\frac{1}{3}}b=231とすると、a2=(313)2=323a^2 = (3^{\frac{1}{3}})^2 = 3^{\frac{2}{3}}a2=(331)2=332, b2=(213)2=223b^2 = (2^{\frac{1}{3}})^2 = 2^{\frac{2}{3}}b2=(231)2=232, ab=313213ab = 3^{\frac{1}{3}}2^{\frac{1}{3}}ab=331231, a3=(313)3=3a^3 = (3^{\frac{1}{3}})^3 = 3a3=(331)3=3, b3=(213)3=2b^3 = (2^{\frac{1}{3}})^3 = 2b3=(231)3=2(323−223)(323+313×223+243)=(a−b)((a2)+ab+(b)2)(3^{\frac{2}{3}} - 2^{\frac{2}{3}})(3^{\frac{2}{3}} + 3^{\frac{1}{3}} \times 2^{\frac{2}{3}} + 2^{\frac{4}{3}}) = (a-b)((a^2) + ab+ (b)^2)(332−232)(332+331×232+234)=(a−b)((a2)+ab+(b)2)a3−b3=(a−b)(a2+ab+b2)a^3 - b^3=(a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2), a=(31/3),a2=(32/3)a=(3^{1/3}), a^2 = (3^{2/3})a=(31/3),a2=(32/3),b=223 b = 2^{\frac{2}{3}}b=232(313)−=a3=5(3^{\frac{1}{3}}) - = a^3 = 5(331)−=a3=5(313−213)(a2=(3^{\frac{1}{3}} - 2^{\frac{1}{3}})(a^2 = (331−231)(a2=3. 最終的な答え(1) 2(2) 18(3) 3\sqrt{3}3(4) 1(5) 32\frac{3}{2}23(6) 125(7) 1(8) 1(9) −154-\frac{15}{4}−415(10) 5