$\int \log(x^2 + 1) dx$ を計算せよ。解析学積分部分積分対数関数arctan2025/7/21. 問題の内容∫log(x2+1)dx\int \log(x^2 + 1) dx∫log(x2+1)dx を計算せよ。2. 解き方の手順部分積分を用いて計算します。log(x2+1)\log(x^2+1)log(x2+1) を uuu、dxdxdx を dvdvdv とします。すると、du=2xx2+1dxdu = \frac{2x}{x^2+1}dxdu=x2+12xdx、v=xv = xv=x となります。部分積分の公式:∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu より、∫log(x2+1)dx=xlog(x2+1)−∫x2xx2+1dx\int \log(x^2 + 1) dx = x\log(x^2 + 1) - \int x \frac{2x}{x^2+1} dx∫log(x2+1)dx=xlog(x2+1)−∫xx2+12xdx=xlog(x2+1)−2∫x2x2+1dx= x\log(x^2 + 1) - 2 \int \frac{x^2}{x^2+1} dx=xlog(x2+1)−2∫x2+1x2dxここで、x2x2+1=x2+1−1x2+1=1−1x2+1\frac{x^2}{x^2+1} = \frac{x^2 + 1 - 1}{x^2+1} = 1 - \frac{1}{x^2+1}x2+1x2=x2+1x2+1−1=1−x2+11 なので、∫x2x2+1dx=∫(1−1x2+1)dx=∫1dx−∫1x2+1dx=x−arctan(x)+C\int \frac{x^2}{x^2+1} dx = \int (1 - \frac{1}{x^2+1}) dx = \int 1 dx - \int \frac{1}{x^2+1} dx = x - \arctan(x) + C∫x2+1x2dx=∫(1−x2+11)dx=∫1dx−∫x2+11dx=x−arctan(x)+Cよって、∫log(x2+1)dx=xlog(x2+1)−2(x−arctan(x))+C\int \log(x^2 + 1) dx = x\log(x^2 + 1) - 2(x - \arctan(x)) + C∫log(x2+1)dx=xlog(x2+1)−2(x−arctan(x))+C=xlog(x2+1)−2x+2arctan(x)+C= x\log(x^2 + 1) - 2x + 2\arctan(x) + C=xlog(x2+1)−2x+2arctan(x)+C3. 最終的な答えxlog(x2+1)−2x+2arctan(x)+Cx\log(x^2 + 1) - 2x + 2\arctan(x) + Cxlog(x2+1)−2x+2arctan(x)+C