次の和 $S$ を求めます。 $S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}$解析学級数数列の和等比数列2025/7/21. 問題の内容次の和 SSS を求めます。S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−12. 解き方の手順S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1S = 1 \cdot 1 + 3 \cdot 2 + 5 \cdot 2^2 + \dots + (2n-1) \cdot 2^{n-1}S=1⋅1+3⋅2+5⋅22+⋯+(2n−1)⋅2n−1この式に 2 を掛けると、2S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2n2S = 1 \cdot 2 + 3 \cdot 2^2 + 5 \cdot 2^3 + \dots + (2n-3) \cdot 2^{n-1} + (2n-1) \cdot 2^n2S=1⋅2+3⋅22+5⋅23+⋯+(2n−3)⋅2n−1+(2n−1)⋅2nS−2SS - 2SS−2S を計算すると、S−2S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2nS - 2S = 1 \cdot 1 + (3-1) \cdot 2 + (5-3) \cdot 2^2 + \dots + (2n-1 - (2n-3)) \cdot 2^{n-1} - (2n-1) \cdot 2^nS−2S=1⋅1+(3−1)⋅2+(5−3)⋅22+⋯+(2n−1−(2n−3))⋅2n−1−(2n−1)⋅2n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n-S = 1 + 2 \cdot 2 + 2 \cdot 2^2 + \dots + 2 \cdot 2^{n-1} - (2n-1) \cdot 2^n−S=1+2⋅2+2⋅22+⋯+2⋅2n−1−(2n−1)⋅2n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2n-S = 1 + 2(2 + 2^2 + \dots + 2^{n-1}) - (2n-1) \cdot 2^n−S=1+2(2+22+⋯+2n−1)−(2n−1)⋅2n等比数列の和の公式 a+ar+ar2+...+arn−1=a1−rn1−ra + ar + ar^2 + ... + ar^{n-1} = a\frac{1-r^n}{1-r}a+ar+ar2+...+arn−1=a1−r1−rn を用いると、2+22+⋯+2n−1=21−2n−11−2=2(2n−1−1)=2n−22 + 2^2 + \dots + 2^{n-1} = 2\frac{1-2^{n-1}}{1-2} = 2(2^{n-1}-1) = 2^n - 22+22+⋯+2n−1=21−21−2n−1=2(2n−1−1)=2n−2したがって、−S=1+2(2n−2)−(2n−1)⋅2n-S = 1 + 2(2^n - 2) - (2n-1) \cdot 2^n−S=1+2(2n−2)−(2n−1)⋅2n−S=1+2n+1−4−(2n−1)⋅2n-S = 1 + 2^{n+1} - 4 - (2n-1) \cdot 2^n−S=1+2n+1−4−(2n−1)⋅2n−S=2n+1−3−(2n−1)⋅2n-S = 2^{n+1} - 3 - (2n-1) \cdot 2^n−S=2n+1−3−(2n−1)⋅2n−S=2⋅2n−3−2n⋅2n+2n-S = 2 \cdot 2^n - 3 - 2n \cdot 2^n + 2^n−S=2⋅2n−3−2n⋅2n+2n−S=3⋅2n−3−2n⋅2n-S = 3 \cdot 2^n - 3 - 2n \cdot 2^n−S=3⋅2n−3−2n⋅2n−S=(3−2n)2n−3-S = (3 - 2n) 2^n - 3−S=(3−2n)2n−3S=(2n−3)2n+3S = (2n - 3) 2^n + 3S=(2n−3)2n+33. 最終的な答えS=(2n−3)2n+3S = (2n-3)2^n + 3S=(2n−3)2n+3