関数 $y = 4x^2 - x - 9$ のグラフ上の点 $(-2, 9)$ における接線の式を求めよ。

解析学微分接線導関数グラフ
2025/3/31

1. 問題の内容

関数 y=4x2x9y = 4x^2 - x - 9 のグラフ上の点 (2,9)(-2, 9) における接線の式を求めよ。

2. 解き方の手順

まず、与えられた関数の導関数を求めます。
y=dydx=8x1y' = \frac{dy}{dx} = 8x - 1
次に、点 (2,9)(-2, 9) における接線の傾きを求めます。これは、導関数に x=2x = -2 を代入することで得られます。
y(2)=8(2)1=161=17y'(-2) = 8(-2) - 1 = -16 - 1 = -17
したがって、接線の傾きは 17-17 です。
次に、接線の式を求めます。接線の式は一般的に y=mx+by = mx + b の形で表されます。ここで、mm は傾き、bb はy切片です。私たちは傾き m=17m = -17 をすでに知っており、接線が点 (2,9)(-2, 9) を通ることも知っています。これらの情報を接線の式に代入して、bb を求めます。
9=17(2)+b9 = -17(-2) + b
9=34+b9 = 34 + b
b=934=25b = 9 - 34 = -25
したがって、y切片は 25-25 です。
最後に、傾き m=17m = -17 とy切片 b=25b = -25 を接線の式 y=mx+by = mx + b に代入して、接線の式を求めます。
y=17x25y = -17x - 25

3. 最終的な答え

y=17x25y = -17x - 25

「解析学」の関連問題

与えられた二つの2階線形常微分方程式の初期値問題を解く問題です。 問題1: $y'' - 2y' + 2y = 0$, 初期条件: $y(0) = 1, y'(0) = 3$ 問題2: $y'' + ...

常微分方程式初期値問題2階線形常微分方程式
2025/7/24

与えられた2つの関数 $f(\theta) = 2\cos^2\theta - 2\sin\theta$ と $g(\theta) = \sin\theta - \cos\theta - 1$ につい...

三角関数加法定理三角関数の合成方程式近似値
2025/7/24

問題は2つあります。 (1) 領域Dにおいて、常に $f_x(x, y) = a$, $f_y(x, y) = b$ (a, bは定数) ならば、$f(x, y) = ax + by + c$ (cは...

偏微分偏積分多変数関数積分定数
2025/7/24

2つの問題があります。 問題1:領域 $D$ で常に $f_x(x, y) = a$, $f_y(x, y) = b$ ($a, b$ は定数) ならば $f(x, y) = ax + by + c$...

偏微分積分多変数関数偏導関数勾配
2025/7/24

与えられた偏導関数から元の関数を求める問題です。 問題1: 領域Dにおいて、$f_x(x,y) = a$、$f_y(x,y) = b$($a, b$は定数)のとき、$f(x,y) = ax + by ...

偏微分積分偏導関数多変数関数
2025/7/24

2つの曲線 $y = \sin x$ と $y = \sin 2x$ で、区間 $\frac{\pi}{3} \le x \le \pi$ で囲まれた部分を、$x$軸の周りに1回転させてできる立体の体...

積分体積三角関数定積分
2025/7/24

ある物体の温度 $T$ と周囲の温度 $T_0$ の関係が、微分方程式 $\frac{dT}{dt} = -k(T - T_0)$ で与えられる。ここで、$k$ は定数である。$100^\circ\t...

微分方程式指数関数熱力学変数分離
2025/7/24

与えられた極限 $\lim_{n \to \infty} \left( \frac{n}{n^2} + \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \cdo...

極限区分求積法定積分arctan
2025/7/24

次の極限値を求めよ。 $\lim_{n \to \infty} (\frac{n}{n^2} + \frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \f...

極限リーマン和積分arctan
2025/7/24

関数 $f(x) = x^2 \log x$ の増減、極値、グラフの凹凸、変曲点を調べ、グラフの概形を描く。

関数の増減極値グラフの凹凸変曲点対数関数微分
2025/7/24