与えられた複素数の2乗 $(1-i)^2$ を計算する問題です。ここで、$i$ は虚数単位であり、$i^2 = -1$ を満たします。

代数学複素数計算虚数単位
2025/7/2
はい、承知いたしました。

1. 問題の内容

与えられた複素数の2乗 (1i)2(1-i)^2 を計算する問題です。ここで、ii は虚数単位であり、i2=1i^2 = -1 を満たします。

2. 解き方の手順

複素数の2乗を展開します。 (ab)2=a22ab+b2(a-b)^2 = a^2 - 2ab + b^2 という公式を利用します。
この場合、a=1a = 1b=ib = i です。したがって、
(1i)2=1221i+i2(1 - i)^2 = 1^2 - 2 \cdot 1 \cdot i + i^2
=12i+i2= 1 - 2i + i^2
ここで、i2=1i^2 = -1 なので、
=12i1= 1 - 2i - 1
=2i= -2i

3. 最終的な答え

(1i)2=2i(1-i)^2 = -2i

「代数学」の関連問題

2つの2次方程式が与えられており、それぞれ括弧内に示された解を持つ。それぞれの問題に対して、定数 $m$ の値を求め、もう一つの解を求める。 (1) $3x^2 - 2mx - m^2 = 0$ で...

二次方程式解の公式因数分解方程式の解
2025/7/2

二次方程式 $x^2 - 3(m+1)x + m^2 - 2 = 0$ が与えられており、$x = -1$ がこの方程式の解であるときの $m$ の値を求める問題です。

二次方程式解の代入因数分解
2025/7/2

2次方程式 $3x^2 - 2mx - m^2 = 0$ が $x=1$ を解に持つとき、定数 $m$ の値と他の解を求める。

二次方程式解の公式因数分解定数
2025/7/2

定数 $a$ が与えられたとき、関数 $y = x^2 - 4x + 3$ の $a \le x \le a+1$ における最小値を求める問題です。

二次関数最小値場合分け平方完成
2025/7/2

与えられた式 $(2^{n+2}-4) - (2^{n+1}-4)$ を簡略化し、計算結果を求めます。

指数指数法則式の簡略化
2025/7/2

放物線 $y = 2x^2 - 8x + 11$ を、それぞれx軸、y軸、原点に関して対称移動した後の放物線の方程式を求める問題です。

二次関数放物線対称移動
2025/7/2

与えられた4つの式を展開し、選択肢のアからコの中から該当する式を選び、記号で答える問題です。 (1) $(x+y-z)(x-y+z)$ (2) $(x-y+z)^2$ (3) $(x-y)^3$ (4...

式の展開多項式因数分解展開公式
2025/7/2

以下の4つの2次方程式の解を求め、与えられた平方根の近似値を使って、小数点以下2桁まで近似します。 (a) $x^2 + 2x - 5 = 0$ ($\sqrt{6} = 2.449$) (b) $...

二次方程式解の公式平方根の近似
2025/7/2

問題20: $a, b$は実数とするとき、次の命題の真偽を調べよ。また、その逆、対偶、裏を述べ、それらの真偽を調べよ。 (1) $a>b \implies a-b>0$ (2) $a=0 \impli...

命題真偽対偶不等式代入自然数偶数奇数
2025/7/2

与えられた6つの2次方程式を解く問題です。 (1) $x^2 - 4x - 2 = 0$ (2) $4x^2 + 11x - 3 = 0$ (3) $x^2 - 5\sqrt{3}x + 18 = 0...

二次方程式解の公式因数分解
2025/7/2