関数 $y = f(x)$ のグラフが与えられており、その定義域は $-1 \le x \le 4$ です。この関数の最大値と最小値を求める必要があります。

解析学関数の最大値関数の最小値グラフ
2025/7/3

1. 問題の内容

関数 y=f(x)y = f(x) のグラフが与えられており、その定義域は 1x4-1 \le x \le 4 です。この関数の最大値と最小値を求める必要があります。

2. 解き方の手順

グラフから、与えられた定義域における関数の最大値と最小値を読み取ります。
* **最大値:** グラフの一番高い点の yy 座標が最大値です。グラフを見ると、x=2x=2 のとき、y=3y=3 となっています。
* **最小値:** グラフの一番低い点の yy 座標が最小値です。グラフを見ると、x=1x=-1 のとき、y=1y=-1 と、x=1x=1のときy=1y=-1となっています。

3. 最終的な答え

最大値: 3
最小値: -1

「解析学」の関連問題

周期 $2\pi$ の周期関数 $f(x)$ をフーリエ級数展開する問題です。 関数 $f(x)$ は次のように定義されています。 $f(x) = \begin{cases} (\pi - x)^2,...

フーリエ級数積分部分積分周期関数
2025/7/3

周期 $2\pi$ の周期関数 $f(x)$ が与えられています。 $f(x) = (\pi - x)^2$ for $0 \le x \le \pi$ $f(x) = 0$ for $-\pi \l...

フーリエ級数周期関数積分三角関数
2025/7/3

周期 $2\pi$ の周期関数 $f(x)$ をフーリエ級数展開する問題です。関数 $f(x)$ は、区間 $0 \le x \le \pi$ で $f(x) = (\pi - x)^2$、区間 $-...

フーリエ級数周期関数積分部分積分
2025/7/3

$a, b$ が実数全体を動くとき、定積分 $\int_0^{\pi} (x - a - b\cos x)^2 dx$ の最小値を求め、そのときの $a, b$ の値を求める。

定積分最小値平方完成積分
2025/7/3

高さ $h$ における断面積が $h^2/2$ の三角形になっている三角錐型の容器に、一定の割合 $a$ で注水する。高さ $h=3$ のときの液面の上昇速度は、高さ $h=1$ のときの液面の上昇速...

積分微分連鎖律体積液面の上昇速度
2025/7/3

$\sin(\frac{3}{2}\pi + \theta)$ を計算してください。

三角関数加法定理sincos
2025/7/3

問題は、$\sin(21\pi/2 + 9\pi/11)$ の値を求めることです。

三角関数sincos三角関数の加法定理弧度法三角関数の周期性
2025/7/3

与えられた式を計算する問題です。式は$\sin(\frac{\pi}{2} + 10)$です。この値を求めます。

三角関数sincosラジアン
2025/7/3

問題文は、液体を容器に注ぐ際の液面の高さ、面積、体積の関係について、微分積分を用いて記述するものです。具体的には、液体の体積 $V$、液面の面積 $S$、液面の高さ $h$、時刻 $t$ を用いて、そ...

微分積分体積液面変化率連鎖律
2025/7/3

平均値の定理を満たす $c$ の値を、与えられた関数と区間に対して求める。平均値の定理は、関数 $f(x)$ が閉区間 $[a, b]$ で連続で、開区間 $(a, b)$ で微分可能ならば、 $\f...

平均値の定理微分指数関数対数関数
2025/7/3