関数 $y = x^4$ の3次導関数 $y^{(3)}$ を求めよ。

解析学微分導関数多項式関数
2025/7/3

1. 問題の内容

関数 y=x4y = x^4 の3次導関数 y(3)y^{(3)} を求めよ。

2. 解き方の手順

まず、1次導関数 yy' を求める。
y=ddx(x4)=4x3y' = \frac{d}{dx}(x^4) = 4x^3
次に、2次導関数 yy'' を求める。
y=ddx(4x3)=12x2y'' = \frac{d}{dx}(4x^3) = 12x^2
最後に、3次導関数 y(3)y^{(3)} を求める。
y(3)=ddx(12x2)=24xy^{(3)} = \frac{d}{dx}(12x^2) = 24x

3. 最終的な答え

y(3)=24xy^{(3)} = 24x

「解析学」の関連問題

与えられた式を計算する問題です。式は$\sin(\frac{\pi}{2} + 10)$です。この値を求めます。

三角関数sincosラジアン
2025/7/3

問題文は、液体を容器に注ぐ際の液面の高さ、面積、体積の関係について、微分積分を用いて記述するものです。具体的には、液体の体積 $V$、液面の面積 $S$、液面の高さ $h$、時刻 $t$ を用いて、そ...

微分積分体積液面変化率連鎖律
2025/7/3

平均値の定理を満たす $c$ の値を、与えられた関数と区間に対して求める。平均値の定理は、関数 $f(x)$ が閉区間 $[a, b]$ で連続で、開区間 $(a, b)$ で微分可能ならば、 $\f...

平均値の定理微分指数関数対数関数
2025/7/3

関数 $f(x) = e^{-x}\sin{x}$ (ただし、$x>0$) について、以下の問いに答える問題です。 (1) $f(x)$ の最大値と最小値、およびそのときの $x$ の値を求める。 (...

関数の最大最小微分三角関数指数関数方程式の解
2025/7/3

$\cos \theta = \frac{1}{3}$ (ただし、$0 < \theta < \pi$) のとき、次の値を求めよ。 (1) $\cos 2\theta$ (2) $\sin 2\the...

三角関数加法定理半角の公式三角関数の合成
2025/7/3

関数 $y = \log(\sin^2 x)$ の微分 $dy/dx$ を求める問題です。ここで、$\log$ は自然対数(底が $e$ の対数)とします。

微分対数関数合成関数の微分三角関数
2025/7/3

不等式 $\sin^2 x - \sin x + \sqrt{3} \sin x \cos x \geq 0$ を満たす $x$ の範囲を、 $0 \leq x < 2\pi$ の範囲で求める問題です...

三角関数不等式三角関数の合成解の範囲
2025/7/3

$0 < \alpha < \frac{\pi}{2} < \beta < \pi$ とする。$\sin \alpha = \frac{3}{5}$、$\sin \beta = \frac{15}{1...

三角関数加法定理三角関数の合成
2025/7/3

曲線 $y=e^x$ 上の点 A(0, 1), 点 B(1, e) における接線と、この曲線で囲まれた部分の面積 S を求める問題です。

積分接線面積
2025/7/3

曲線 $y = x^3$ と点 $(0, 2)$ を通る接線によって囲まれる部分の面積を求めよ。まず、接線の方程式を求める。

微分積分接線面積
2025/7/3