次の定積分を計算します。 $\int_{-2}^{0} (9x^2 + 4x + 3) dx$

解析学定積分積分多項式
2025/3/31

1. 問題の内容

次の定積分を計算します。
20(9x2+4x+3)dx\int_{-2}^{0} (9x^2 + 4x + 3) dx

2. 解き方の手順

定積分を計算するために、まず被積分関数 9x2+4x+39x^2 + 4x + 3 の不定積分を求めます。
(9x2+4x+3)dx=9x2dx+4xdx+3dx\int (9x^2 + 4x + 3) dx = 9 \int x^2 dx + 4 \int x dx + 3 \int dx
=9x33+4x22+3x+C= 9 \cdot \frac{x^3}{3} + 4 \cdot \frac{x^2}{2} + 3x + C
=3x3+2x2+3x+C= 3x^3 + 2x^2 + 3x + C
次に、不定積分を使って定積分を計算します。
20(9x2+4x+3)dx=[3x3+2x2+3x]20\int_{-2}^{0} (9x^2 + 4x + 3) dx = [3x^3 + 2x^2 + 3x]_{-2}^{0}
=(3(0)3+2(0)2+3(0))(3(2)3+2(2)2+3(2))= (3(0)^3 + 2(0)^2 + 3(0)) - (3(-2)^3 + 2(-2)^2 + 3(-2))
=0(3(8)+2(4)+3(2))= 0 - (3(-8) + 2(4) + 3(-2))
=0(24+86)= 0 - (-24 + 8 - 6)
=0(22)= 0 - (-22)
=22= 22

3. 最終的な答え

22

「解析学」の関連問題

三角関数の方程式と不等式を解く問題です。角度 $θ$ の範囲は $0 \leq θ < 2π$ です。

三角関数三角方程式三角不等式sincostan
2025/5/22

与えられた2つの関数 $y$ について、それぞれ微分を求めます。 (3) $y = \sin^{-1}x \cos^{-1}x$ (5) $y = \frac{\sin^{-1}x}{x}$

微分逆三角関数積の微分商の微分
2025/5/22

$y = \tan^{-1}e^x$ の導関数 $y'$ を求める。

微分逆三角関数合成関数の微分
2025/5/22

関数 $y = \tan^{-1} e^x$ の導関数を求める問題です。

微分導関数逆三角関数合成関数指数関数
2025/5/22

与えられた2つの関数について、微分を求める問題ではなく、定義域を求める問題だと解釈します。 (8) $y = \sqrt{\tan^{-1}x - 1}$ (10) $y = \log(\cos^{-...

関数の定義域逆三角関数対数関数平方根
2025/5/22

与えられた2つの関数について、定義域を求める問題です。 (8) $y = \sqrt{\tan^{-1} x - 1}$ (10) $y = \log (\cos^{-1} x)$

関数の定義域逆三角関数平方根対数関数
2025/5/22

以下の4つの関数の導関数を求めます。 (7) $y = \frac{1}{(\arccos x + 4)^2}$ (8) $y = \sqrt{\arctan x - 1}$ (9) $y = \ar...

微分導関数連鎖律逆三角関数指数関数対数関数
2025/5/22

与えられた関数 $y_2 = \frac{1}{(\cos^{-1} x + 4)^2}$ に対して、その一階導関数 $y_1 = \frac{dy_2}{dx}$ を求める問題です。

微分導関数合成関数の微分逆三角関数
2025/5/22

与えられた関数 $y = \tan^{-1}(\sqrt{x})$ の導関数 $\frac{dy}{dx}$ を求める問題です。

導関数合成関数の微分連鎖律逆三角関数
2025/5/22

与えられた関数を微分する問題です。 (1) $y = \sin^{-1} x + \cos^{-1} x$ (2) $y = (\sqrt{x}-1) \cos^{-1} x$ (3) $y = \s...

微分逆三角関数導関数積の微分
2025/5/22