問題は、図 [8] と [9] のように紙を4つに折りたたんで、網掛けされた部分を切り抜いたとき、紙を広げると切り抜かれた部分がどのようになるかを選ぶ問題です。

幾何学折り紙図形対称性空間認識
2025/7/3

1. 問題の内容

問題は、図 [8] と [9] のように紙を4つに折りたたんで、網掛けされた部分を切り抜いたとき、紙を広げると切り抜かれた部分がどのようになるかを選ぶ問題です。

2. 解き方の手順

図[8]の問題:
- 紙は最初に半分に折り畳まれ、次にさらに半分に折り畳まれています。
- 切り取られた部分は、紙の四隅と中央付近の長方形です。
- 紙を広げると、それぞれの切り取り箇所は4箇所に現れます。中央の切り抜きは正方形になります。
- 四隅の長方形は、正方形の中心から等距離に配置される必要があります。
- 従って、[8]の正解はO4です。
図[9]の問題:
- 紙は最初に半分に折り畳まれ、次に三角形になるように折り畳まれています。
- 切り取られた部分は、三角形の角付近と三角形の斜辺に沿った小さい三角形です。
- 紙を広げると、それぞれの切り取り箇所は4箇所に現れます。中央の切り抜きは正方形になります。
- 三角形の切り抜きは、正方形の角に配置される必要があります。
- 従って、[9]の正解はO4です。

3. 最終的な答え

[8] の答え: O4
[9] の答え: O4

「幾何学」の関連問題

2点 A(3, 4), B(-1, 2) を直径の両端とする円の方程式を求める問題です。

円の方程式2点間の距離中点
2025/7/3

楕円 $\frac{x^2}{13^2} + \frac{y^2}{12^2} = 1$ と双曲線 $\frac{x^2}{4^2} - \frac{y^2}{3^2} = 1$ がある。第1象限にお...

楕円双曲線接線交点直交
2025/7/3

直角三角形ABCにおいて、$\angle BAC = 42^\circ$, $AC = 8$ であるとき、辺BCの長さ $a$ を求める問題です。

三角比直角三角形tan辺の長さ
2025/7/3

三角形ABCにおいて、$a = 2\sqrt{3}$、$b = 3 - \sqrt{3}$、$C = 120^\circ$が与えられている。残りの辺cの長さと角A、角Bの大きさを求めよ。

三角比余弦定理正弦定理三角形
2025/7/3

与えられた4つの方程式がどのような図形を表すかを答える問題です。これらの式は全て円の方程式です。

円の方程式座標平面半径中心
2025/7/3

与えられた漸近線 $y=2x$ と $y=-2x$ を持つ双曲線が点 $(3, 0)$ を通るとき、 (1) その双曲線の方程式と焦点の座標を求めよ。 (2) その双曲線上の点 $P$ において、焦点...

双曲線焦点座標直交漸近線
2025/7/3

$\triangle OAB$ において、ベクトル $\vec{OP}$ が $\vec{OP} = s\vec{OA} + t\vec{OB}$ で表され、$0 \le s \le 1$ かつ $0...

ベクトル線形代数点の存在範囲平行四辺形
2025/7/3

三角形ABCがあり、その頂点の座標はA(2, 3), B(-1, 0), C(3, 0)で与えられています。 (1) 各頂点から対辺に引いた垂線(つまり、三角形の垂心)の交点の座標を求めます。 (2)...

三角形座標垂心外心ベクトル
2025/7/3

傾斜角15度の坂を20m上ったとき、水平方向の距離 $x$ と鉛直方向の距離 $y$ を求める問題です。三角比の表を利用し、小数第1位を四捨五入して整数で答えます。

三角比三角関数斜面角度距離
2025/7/3

2つの直線 $y = mx + 5$ と $y = 3x - 6$ のなす角が $\frac{\pi}{4}$ であるとき、定数 $m$ の値を求めよ。

直線角度傾き三角関数絶対値
2025/7/3