次の定積分を求めなさい。 $\int_{-1}^{2} (9x^2 + 8x + 7) dx + \int_{2}^{3} (9x^2 + 8x + 7) dx$解析学定積分積分計算多項式2025/3/311. 問題の内容次の定積分を求めなさい。∫−12(9x2+8x+7)dx+∫23(9x2+8x+7)dx\int_{-1}^{2} (9x^2 + 8x + 7) dx + \int_{2}^{3} (9x^2 + 8x + 7) dx∫−12(9x2+8x+7)dx+∫23(9x2+8x+7)dx2. 解き方の手順まず、不定積分を求めます。∫(9x2+8x+7)dx=9∫x2dx+8∫xdx+7∫dx=9⋅x33+8⋅x22+7x+C=3x3+4x2+7x+C\int (9x^2 + 8x + 7) dx = 9 \int x^2 dx + 8 \int x dx + 7 \int dx = 9 \cdot \frac{x^3}{3} + 8 \cdot \frac{x^2}{2} + 7x + C = 3x^3 + 4x^2 + 7x + C∫(9x2+8x+7)dx=9∫x2dx+8∫xdx+7∫dx=9⋅3x3+8⋅2x2+7x+C=3x3+4x2+7x+C次に、定積分を計算します。∫−12(9x2+8x+7)dx=[3x3+4x2+7x]−12=(3(23)+4(22)+7(2))−(3(−1)3+4(−1)2+7(−1))=(24+16+14)−(−3+4−7)=54−(−6)=54+6=60\int_{-1}^{2} (9x^2 + 8x + 7) dx = [3x^3 + 4x^2 + 7x]_{-1}^{2} = (3(2^3) + 4(2^2) + 7(2)) - (3(-1)^3 + 4(-1)^2 + 7(-1)) = (24 + 16 + 14) - (-3 + 4 - 7) = 54 - (-6) = 54 + 6 = 60∫−12(9x2+8x+7)dx=[3x3+4x2+7x]−12=(3(23)+4(22)+7(2))−(3(−1)3+4(−1)2+7(−1))=(24+16+14)−(−3+4−7)=54−(−6)=54+6=60∫23(9x2+8x+7)dx=[3x3+4x2+7x]23=(3(33)+4(32)+7(3))−(3(23)+4(22)+7(2))=(81+36+21)−(24+16+14)=138−54=84\int_{2}^{3} (9x^2 + 8x + 7) dx = [3x^3 + 4x^2 + 7x]_{2}^{3} = (3(3^3) + 4(3^2) + 7(3)) - (3(2^3) + 4(2^2) + 7(2)) = (81 + 36 + 21) - (24 + 16 + 14) = 138 - 54 = 84∫23(9x2+8x+7)dx=[3x3+4x2+7x]23=(3(33)+4(32)+7(3))−(3(23)+4(22)+7(2))=(81+36+21)−(24+16+14)=138−54=84最後に、二つの定積分を足し合わせます。∫−12(9x2+8x+7)dx+∫23(9x2+8x+7)dx=60+84=144\int_{-1}^{2} (9x^2 + 8x + 7) dx + \int_{2}^{3} (9x^2 + 8x + 7) dx = 60 + 84 = 144∫−12(9x2+8x+7)dx+∫23(9x2+8x+7)dx=60+84=1443. 最終的な答え144