次の定積分を計算します。 $\int_{-3}^{1} (10x^2 - 3x - 4) \, dx + \int_{1}^{3} (10x^2 - 3x - 4) \, dx$解析学定積分積分計算2025/3/311. 問題の内容次の定積分を計算します。∫−31(10x2−3x−4) dx+∫13(10x2−3x−4) dx\int_{-3}^{1} (10x^2 - 3x - 4) \, dx + \int_{1}^{3} (10x^2 - 3x - 4) \, dx∫−31(10x2−3x−4)dx+∫13(10x2−3x−4)dx2. 解き方の手順まず、定積分の性質を使って、積分区間を結合します。∫−31(10x2−3x−4) dx+∫13(10x2−3x−4) dx=∫−33(10x2−3x−4) dx\int_{-3}^{1} (10x^2 - 3x - 4) \, dx + \int_{1}^{3} (10x^2 - 3x - 4) \, dx = \int_{-3}^{3} (10x^2 - 3x - 4) \, dx∫−31(10x2−3x−4)dx+∫13(10x2−3x−4)dx=∫−33(10x2−3x−4)dx次に、積分を実行します。∫(10x2−3x−4) dx=103x3−32x2−4x+C\int (10x^2 - 3x - 4) \, dx = \frac{10}{3}x^3 - \frac{3}{2}x^2 - 4x + C∫(10x2−3x−4)dx=310x3−23x2−4x+C定積分を計算します。∫−33(10x2−3x−4) dx=[103x3−32x2−4x]−33\int_{-3}^{3} (10x^2 - 3x - 4) \, dx = \left[ \frac{10}{3}x^3 - \frac{3}{2}x^2 - 4x \right]_{-3}^{3}∫−33(10x2−3x−4)dx=[310x3−23x2−4x]−33=(103(3)3−32(3)2−4(3))−(103(−3)3−32(−3)2−4(−3))= \left( \frac{10}{3}(3)^3 - \frac{3}{2}(3)^2 - 4(3) \right) - \left( \frac{10}{3}(-3)^3 - \frac{3}{2}(-3)^2 - 4(-3) \right)=(310(3)3−23(3)2−4(3))−(310(−3)3−23(−3)2−4(−3))=(103(27)−32(9)−12)−(103(−27)−32(9)+12)= \left( \frac{10}{3}(27) - \frac{3}{2}(9) - 12 \right) - \left( \frac{10}{3}(-27) - \frac{3}{2}(9) + 12 \right)=(310(27)−23(9)−12)−(310(−27)−23(9)+12)=(90−272−12)−(−90−272+12)= (90 - \frac{27}{2} - 12) - (-90 - \frac{27}{2} + 12)=(90−227−12)−(−90−227+12)=90−272−12+90+272−12= 90 - \frac{27}{2} - 12 + 90 + \frac{27}{2} - 12=90−227−12+90+227−12=180−24=156= 180 - 24 = 156=180−24=1563. 最終的な答え156