袋Aには赤球5個、白球3個、袋Bには赤球4個、白球6個が入っています。袋Aと袋Bからそれぞれ1個ずつ球を取り出すとき、袋Aが赤球で袋Bが白球である確率を求めます。

確率論・統計学確率確率計算事象の独立性組み合わせ
2025/7/3

1. 問題の内容

袋Aには赤球5個、白球3個、袋Bには赤球4個、白球6個が入っています。袋Aと袋Bからそれぞれ1個ずつ球を取り出すとき、袋Aが赤球で袋Bが白球である確率を求めます。

2. 解き方の手順

袋Aから赤球を取り出す確率と、袋Bから白球を取り出す確率をそれぞれ計算し、それらを掛け合わせます。
袋Aには合計で 5+3=85 + 3 = 8 個の球が入っています。そのうち赤球は5個なので、袋Aから赤球を取り出す確率は 58\frac{5}{8} です。
袋Bには合計で 4+6=104 + 6 = 10 個の球が入っています。そのうち白球は6個なので、袋Bから白球を取り出す確率は 610\frac{6}{10} です。
袋Aから赤球を取り出し、かつ袋Bから白球を取り出す確率は、それぞれの確率の積で求められます。
P(Aが赤球でBが白球)=P(Aが赤球)×P(Bが白球)P(\text{Aが赤球でBが白球}) = P(\text{Aが赤球}) \times P(\text{Bが白球})
P(Aが赤球でBが白球)=58×610=58×35=1540=38P(\text{Aが赤球でBが白球}) = \frac{5}{8} \times \frac{6}{10} = \frac{5}{8} \times \frac{3}{5} = \frac{15}{40} = \frac{3}{8}

3. 最終的な答え

求める確率は 38\frac{3}{8} です。

「確率論・統計学」の関連問題

5人の人にそれぞれ書類を送る際に、宛名と書類の内容が食い違ってしまった。 (1) ちょうど2人分の宛名と書面が食い違っている場合は何通りあるか。 (2) ちょうど4人分の宛名と書面が食い違っている場合...

順列組み合わせ場合の数完全順列
2025/7/17

確率変数 $T$ が標準正規分布 $N(0, 1)$ に従い、確率変数 $X$ が正規分布 $N(2, 4)$ に従うとき、$P(-1 \le X \le 3)$ を求める問題です。ここで、$N(2,...

正規分布確率標準化累積分布関数
2025/7/17

4種類のSOYJOY(ブルーベリー、アップル、アーモンド&チョコレート、抹茶&マカダミア)がそれぞれ同じ本数だけ箱に入っている。箱から無作為に2本のSOYJOYを取り出したとき、取り出した2本が同じ味...

確率組み合わせ分数確率の計算
2025/7/17

箱の中に-4, -3, -2, -1, 0, 1, 2, 3と書かれた8個のボールが入っている。この箱から3個のボールを同時に取り出す。以下の確率を求めよ。 (1) 取り出した3個のボールに書かれた数...

確率組み合わせ期待値場合の数
2025/7/17

ある選挙区でA候補とB候補の2人が出馬した。無作為に100票を開票したところ、A候補が70票、B候補が30票であった。仮説検定の考え方を用いて、基準となる確率を1%とした場合、A氏は当選確実と判断して...

仮説検定二項検定確率分布統計有意水準
2025/7/17

与えられたデータは1994年から2020年の最終消費支出額系列(単位:兆円)であり、四半期ごとのデータが含まれています。問題は以下の通りです。 * D列に季節調整系列を計算し、小数第4位まで表示す...

時系列分析季節調整増加率データ分析
2025/7/17

10個のデータがあり、そのうち5個のデータの平均が4、標準偏差が2である。残りの5個のデータの平均は8、標準偏差は6である。 (1)全体の平均を求めよ。 (2)全体の分散を求めよ。

平均分散標準偏差データの分析
2025/7/17

与えられた10個のデータ: 1, 3, 2, 4, 2, 10, 5, 1, 10, 2 について、平均値、中央値(メジアン)、最頻値(モード)、範囲(レンジ)、四分位数、四分位範囲、四分位偏差、分散...

記述統計平均値中央値最頻値範囲四分位数四分位範囲四分位偏差分散標準偏差
2025/7/17

確率変数 $X$ が正規分布 $N(20, 25)$ に従うとき、以下の確率を標準正規分布表を用いて求める。 (1) $P(22 \le X \le 27)$ (2) $P(16 \l...

正規分布確率標準化標準正規分布
2025/7/17

確率論における「独立な試行」とはどのようなことかを30字以上で説明する問題です。

確率独立試行確率の定義事象
2025/7/17