30人の生徒の通学時間と通学手段(電車通学かどうか)をまとめた表が与えられています。この中から1人を選んだとき、その生徒の通学時間が30分以上であるという条件の下で、電車通学である確率を求めます。

確率論・統計学条件付き確率確率統計
2025/7/3

1. 問題の内容

30人の生徒の通学時間と通学手段(電車通学かどうか)をまとめた表が与えられています。この中から1人を選んだとき、その生徒の通学時間が30分以上であるという条件の下で、電車通学である確率を求めます。

2. 解き方の手順

まず、条件付き確率の公式を確認します。
事象A:電車通学である
事象B:通学時間が30分以上である
とすると、求めたい確率はP(AB)P(A|B)で表され、
P(AB)=P(AB)P(B)P(A|B) = \frac{P(A \cap B)}{P(B)}
で計算できます。
ここで、
P(AB)P(A \cap B)は、通学時間が30分以上で、かつ電車通学である確率です。
表から、通学時間が30分以上で、かつ電車通学である生徒は16人なので、P(AB)=1630P(A \cap B) = \frac{16}{30}
P(B)P(B)は、通学時間が30分以上である確率です。
表から、通学時間が30分以上の生徒は18人なので、P(B)=1830P(B) = \frac{18}{30}
したがって、求める条件付き確率は、
P(AB)=16301830=1618=89P(A|B) = \frac{\frac{16}{30}}{\frac{18}{30}} = \frac{16}{18} = \frac{8}{9}

3. 最終的な答え

89\frac{8}{9}

「確率論・統計学」の関連問題

サイコロを繰り返し投げ、出た目の数を加えていく。合計が4以上になったところで終了する。終了するまでに投げる回数の期待値を求める。

期待値確率サイコロ
2025/7/3

18本のくじの中に何本か当たりくじが入っています。1本引くと、当たりなら3点、はずれなら-1点がもらえます。得点の期待値が1以上になるためには、当たりくじが何本以上必要か求めます。

期待値確率不等式
2025/7/3

あるゲームに、初級、中級、上級の3つのコースがあり、各コースで勝つ確率はそれぞれ $\frac{2}{3}$, $\frac{1}{2}$, $\frac{1}{5}$ です。初級、中級、上級のコース...

期待値確率意思決定
2025/7/3

あるゲームには初級、中級、上級のコースがあり、各コースでの勝利確率はそれぞれ $\frac{2}{3}$, $\frac{1}{2}$, $\frac{1}{5}$ である。初級、中級、上級コースで勝...

期待値確率算数
2025/7/3

ジョーカー1枚を含む53枚のトランプから、カードを戻さずに1枚ずつ引くとき、10枚目にジョーカーが出る確率を求める。

確率期待値トランプ
2025/7/3

サイコロを1回振るゲームにおいて、1の目が出たら2点、2か3の目が出たら1点、その他の目が出たら0点を得る。このゲームを1回行うときの得点の期待値を求める。

期待値確率サイコロ
2025/7/3

ジョーカーを除く52枚のトランプから1枚引くとき、点数表に従って点数を付ける。点数が2点と4点になる確率、及び点数の期待値を求める。ただし、確率は約分しない。

確率期待値トランプ
2025/7/3

赤球が4個、白球が5個入った合計9個の球が入っている袋から、同時に2個の球を取り出すとき、取り出した赤球の個数の期待値と白球の個数の期待値をそれぞれ求める。

期待値確率組み合わせ
2025/7/3

袋の中に赤球が6個、白球が3個、合計9個の球が入っている。この袋から球を1個ずつ続けて2個取り出す。取り出した球は元に戻さないとき、1個目が白球で2個目が赤球である確率を求めよ。

確率条件付き確率球の取り出し
2025/7/3

1個のサイコロを投げて出る目を確率変数 $X$ とします。このとき、以下の確率変数の期待値、分散、標準偏差を求めます。 (1) $X + 4$ (2) $-2X$ (3) $3X - 2$

確率変数期待値分散標準偏差サイコロ
2025/7/3