与えられた式 $\frac{\sqrt{5}}{2 - \sqrt{3}}$ を有理化して簡単にします。

代数学有理化平方根式の計算
2025/7/3

1. 問題の内容

与えられた式 523\frac{\sqrt{5}}{2 - \sqrt{3}} を有理化して簡単にします。

2. 解き方の手順

分母を有理化するために、分母の共役な複素数 2+32 + \sqrt{3} を分子と分母の両方に掛けます。
523=5232+32+3\frac{\sqrt{5}}{2 - \sqrt{3}} = \frac{\sqrt{5}}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}}
=5(2+3)(23)(2+3)= \frac{\sqrt{5}(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}
分母は (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2 の形なので、計算すると
(23)(2+3)=22(3)2=43=1(2 - \sqrt{3})(2 + \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1
したがって、式は次のようになります。
5(2+3)1=25+53=25+15\frac{\sqrt{5}(2 + \sqrt{3})}{1} = 2\sqrt{5} + \sqrt{5}\sqrt{3} = 2\sqrt{5} + \sqrt{15}

3. 最終的な答え

25+152\sqrt{5} + \sqrt{15}

「代数学」の関連問題

与えられた数 $a = \frac{4}{3\sqrt{2} - \sqrt{10}}$ について、 (1) $a$ の分母を有理化し、簡略化する。 (2) $a + \frac{2}{a}$ の値と...

式の計算分母の有理化平方根式の値
2025/7/3

与えられた行列 $A = \begin{pmatrix} -1 & 1 & 2 & 2 \\ 0 & 2 & 6 & 0 \\ 1 & 1 & 4 & -2 \end{pmatrix}$ について、以...

行列線形代数ランク逆行列
2025/7/3

$a = \frac{4}{3\sqrt{2} - \sqrt{10}}$ とする。 $a$ の分母を有理化し、簡単にせよ。

有理化平方根式の計算
2025/7/3

与えられた行列 $A$ のランクを求める問題です。 $A = \begin{pmatrix} -1 & 1 & 2 & 2 \\ 0 & 2 & 6 & 0 \\ 1 & 1 & 4 & -2 \en...

線形代数行列ランク行基本変形掃き出し法
2025/7/3

(3) $\sum_{k=1}^{n} k(2k-1)$ (4) $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$ (5) $\sum_{k=1}^{n-1} \frac{1}...

級数シグマ数列の和等比数列
2025/7/3

放物線 $y = -x^2 - 10x - 25$ をどのように平行移動すると、放物線 $y = -x^2 + 8x - 23$ に重なるかを求める問題です。

二次関数平行移動平方完成頂点
2025/7/3

与えられた問題は、以下の2つの和を計算するものです。 (1) $\sum_{k=1}^{15} k^2$ (2) $\sum_{k=1}^{n} (5-2k)$

シグマ数列級数計算
2025/7/3

与えられた数列の一般項 $a_n$ を、$n$ の式で表す問題です。数列は、偶数 $2, 4, 6, 8, \dots$ と $5$ の累乗の積で表されています。具体的には、$2 \cdot 5, 4...

数列一般項等比数列指数
2025/7/3

$0 \le x < 2\pi$ のとき、次の方程式を解く問題です。 $2\cos2x + 4\cos x - 1 = 0$

三角関数方程式二次方程式三角関数の合成解の公式
2025/7/3

(1) 初項96、公比1/2、項数5の等比数列の和Sを求める。 (2) 等比数列 9, 6, 4, 8/3,... の初項から第n項までの和 $S_n$ を求める。 (3) $\sum_{k=1}^{...

等比数列級数シグマ数列の和
2025/7/3