次の和を求めよ。 $\sum_{k=1}^n (3k-1)^2 = 2^2 + 5^2 + 8^2 + \dots + (3n-1)^2$代数学数列シグマ展開公式2025/7/31. 問題の内容次の和を求めよ。∑k=1n(3k−1)2=22+52+82+⋯+(3n−1)2\sum_{k=1}^n (3k-1)^2 = 2^2 + 5^2 + 8^2 + \dots + (3n-1)^2∑k=1n(3k−1)2=22+52+82+⋯+(3n−1)22. 解き方の手順まず、(3k−1)2(3k-1)^2(3k−1)2を展開します。(3k−1)2=9k2−6k+1(3k-1)^2 = 9k^2 - 6k + 1(3k−1)2=9k2−6k+1次に、∑k=1n(3k−1)2\sum_{k=1}^n (3k-1)^2∑k=1n(3k−1)2 を計算します。∑k=1n(3k−1)2=∑k=1n(9k2−6k+1)\sum_{k=1}^n (3k-1)^2 = \sum_{k=1}^n (9k^2 - 6k + 1)∑k=1n(3k−1)2=∑k=1n(9k2−6k+1)∑k=1n\sum_{k=1}^n∑k=1nの線形性から、∑k=1n(9k2−6k+1)=9∑k=1nk2−6∑k=1nk+∑k=1n1\sum_{k=1}^n (9k^2 - 6k + 1) = 9\sum_{k=1}^n k^2 - 6\sum_{k=1}^n k + \sum_{k=1}^n 1∑k=1n(9k2−6k+1)=9∑k=1nk2−6∑k=1nk+∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)、∑k=1nk=n(n+1)2\sum_{k=1}^n k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)、∑k=1n1=n\sum_{k=1}^n 1 = n∑k=1n1=nを利用します。9∑k=1nk2−6∑k=1nk+∑k=1n1=9n(n+1)(2n+1)6−6n(n+1)2+n9\sum_{k=1}^n k^2 - 6\sum_{k=1}^n k + \sum_{k=1}^n 1 = 9\frac{n(n+1)(2n+1)}{6} - 6\frac{n(n+1)}{2} + n9∑k=1nk2−6∑k=1nk+∑k=1n1=96n(n+1)(2n+1)−62n(n+1)+n=32n(n+1)(2n+1)−3n(n+1)+n= \frac{3}{2}n(n+1)(2n+1) - 3n(n+1) + n=23n(n+1)(2n+1)−3n(n+1)+n=32n(2n2+3n+1)−3n2−3n+n= \frac{3}{2}n(2n^2+3n+1) - 3n^2 - 3n + n=23n(2n2+3n+1)−3n2−3n+n=3n3+92n2+32n−3n2−2n= 3n^3 + \frac{9}{2}n^2 + \frac{3}{2}n - 3n^2 - 2n=3n3+29n2+23n−3n2−2n=3n3+32n2−12n= 3n^3 + \frac{3}{2}n^2 - \frac{1}{2}n=3n3+23n2−21n=n2(6n2+3n−1)= \frac{n}{2}(6n^2 + 3n - 1)=2n(6n2+3n−1)3. 最終的な答えn(6n2+3n−1)2\frac{n(6n^2+3n-1)}{2}2n(6n2+3n−1)