放物線 $y = ax^2 + bx + c$ の頂点の座標が $(1, -3)$ であり、点 $(0, -1)$ を通るとき、$a, b, c$ の値を求めよ。

代数学二次関数放物線頂点展開
2025/7/3

1. 問題の内容

放物線 y=ax2+bx+cy = ax^2 + bx + c の頂点の座標が (1,3)(1, -3) であり、点 (0,1)(0, -1) を通るとき、a,b,ca, b, c の値を求めよ。

2. 解き方の手順

まず、頂点の座標が (1,3)(1, -3) であることから、放物線の式を頂点形式で表すことができます。
y=a(x1)23y = a(x - 1)^2 - 3
次に、この放物線が点 (0,1)(0, -1) を通ることから、この点を代入して aa の値を求めます。
1=a(01)23-1 = a(0 - 1)^2 - 3
1=a(1)3-1 = a(1) - 3
a=2a = 2
したがって、a=2a = 2 となります。放物線の式は
y=2(x1)23y = 2(x - 1)^2 - 3
これを展開して、y=ax2+bx+cy = ax^2 + bx + c の形にします。
y=2(x22x+1)3y = 2(x^2 - 2x + 1) - 3
y=2x24x+23y = 2x^2 - 4x + 2 - 3
y=2x24x1y = 2x^2 - 4x - 1
したがって、a=2,b=4,c=1a = 2, b = -4, c = -1 となります。

3. 最終的な答え

a=2a = 2
b=4b = -4
c=1c = -1

「代数学」の関連問題

与えられた不等式(i)から(vi)に対して、$x$の値の範囲を求めよ。 (i) $x^2 - 4x \geq 0$ (ii) $x^2 - 6x + 8 < 0$ (iii) $x^2 - 4 > 0...

不等式二次不等式因数分解解の範囲
2025/7/3

問題は、次の3つの数式を解くことです。 (1) $|2x-1|=3x$ (2) $|x+\frac{1}{3}| > 2x+1$ (3) $|x+4|+|x-1|=7$

絶対値方程式不等式場合分け
2025/7/3

ある高校の1年生全員が長椅子に座るとき、1脚に6人ずつ座ると15人が座れなくなる。また、1脚に7人ずつ座ると、使わない長椅子が3脚できる。長椅子の数は何脚以上何脚以下か。

不等式文章問題連立不等式線形計画法
2025/7/3

$x$ についての不等式 $x + a \ge 4x + 9$ について、以下の問いに答えます。 * (1) 解が $x \le 2$ となるように、定数 $a$ の値を求めます。 ...

不等式連立不等式文章題
2025/7/3

問題21は、$x$についての不等式 $x + a \geq 4x + 9$ について、以下の2つの問いに答えるものです。 (1) 解が $x \leq 2$ となるように、定数 $a$ の値を定める。...

不等式一次不等式解の範囲定数
2025/7/3

(1) 不等式 $4x - 9 < 5(2x - 3)$ を満たす最小の整数 $x$ を求める。 (2) 不等式 $\frac{x}{4} - \frac{3x - 1}{3} > 1$ を満たす最大...

不等式一次不等式連立不等式整数
2025/7/3

問題7では、$y = x(x-1)$ と $y = x(1-x)$ のグラフを同じ図に描き、頂点間の垂直距離を求める。問題8では、$y = (x+1)(x-5)$ と $y=(1+x)(5-x)$ の...

二次関数グラフ平行移動反転頂点
2025/7/3

$4x - 9 < 10x - 15$

不等式連立不等式一次不等式整数
2025/7/3

与えられた二次関数のグラフの概形を描き、以下の二次方程式が実数解を持つかどうか判定し、存在する場合はその解を求めよ。 (i) $x^2 + x = 0$ (ii) $x^2 - x - 6 = 0$ ...

二次方程式判別式解の公式実数解
2025/7/3

$a$ を定数とする。以下の(I)~(III)の連立不等式のうち、解が $x=2$ となるような $a$ の値が存在するものをすべて選び、そのときの $a$ の値を求めよ。 (I) $\begin{c...

連立不等式不等式解の存在定数
2025/7/3