二次方程式 $2x^2 + 18x + 40 = 0$ を解く問題です。

代数学二次方程式因数分解解の公式
2025/7/3

1. 問題の内容

二次方程式 2x2+18x+40=02x^2 + 18x + 40 = 0 を解く問題です。

2. 解き方の手順

まず、方程式全体を2で割って、係数を小さくします。
x2+9x+20=0x^2 + 9x + 20 = 0
次に、因数分解を行います。2つの数を探して、それらの積が20になり、和が9になるようにします。その数は4と5です。したがって、因数分解は次のようになります。
(x+4)(x+5)=0(x + 4)(x + 5) = 0
最後に、xx について解きます。(x+4)=0(x + 4) = 0 または (x+5)=0(x + 5) = 0 である必要があります。したがって、解は x=4x = -4 または x=5x = -5 となります。

3. 最終的な答え

x=4,5x = -4, -5

「代数学」の関連問題

問題21は、$x$についての不等式 $x + a \geq 4x + 9$ について、以下の2つの問いに答えるものです。 (1) 解が $x \leq 2$ となるように、定数 $a$ の値を定める。...

不等式一次不等式解の範囲定数
2025/7/3

(1) 不等式 $4x - 9 < 5(2x - 3)$ を満たす最小の整数 $x$ を求める。 (2) 不等式 $\frac{x}{4} - \frac{3x - 1}{3} > 1$ を満たす最大...

不等式一次不等式連立不等式整数
2025/7/3

問題7では、$y = x(x-1)$ と $y = x(1-x)$ のグラフを同じ図に描き、頂点間の垂直距離を求める。問題8では、$y = (x+1)(x-5)$ と $y=(1+x)(5-x)$ の...

二次関数グラフ平行移動反転頂点
2025/7/3

$4x - 9 < 10x - 15$

不等式連立不等式一次不等式整数
2025/7/3

与えられた二次関数のグラフの概形を描き、以下の二次方程式が実数解を持つかどうか判定し、存在する場合はその解を求めよ。 (i) $x^2 + x = 0$ (ii) $x^2 - x - 6 = 0$ ...

二次方程式判別式解の公式実数解
2025/7/3

$a$ を定数とする。以下の(I)~(III)の連立不等式のうち、解が $x=2$ となるような $a$ の値が存在するものをすべて選び、そのときの $a$ の値を求めよ。 (I) $\begin{c...

連立不等式不等式解の存在定数
2025/7/3

画像に示された6つの不等式をそれぞれ解きます。 (1) $8x - 3(2x - 3) < 5$ (2) $-3(3x + 2) > 5(x - 4)$ (3) $\frac{3}{10}x + 1....

不等式一次不等式連立不等式
2025/7/3

次の3つの問題について、方程式または不等式を解きます。 (1) $|x+4| = 5x$ (2) $|x-1| \le 2x$ (3) $|x+1| + |x-3| = 8$

絶対値方程式不等式場合分け
2025/7/3

次の方程式、不等式を解く問題です。 (1) $|x-6|=2x$ (2) $|x-3|<2x$ (3) $|x|+|x-2|=6$

絶対値方程式不等式場合分け
2025/7/3

与えられた絶対値記号を含む式について、絶対値記号を外した式を求める問題です。 (1) $|x-5|$ (2) $|x+7|$ (3) $|3x-4|$ (6) $|4x+1| \ge 17$

絶対値不等式場合分け
2025/7/3