以下の2つの問題について、円と直線の交点の座標を求めます。 (1) 円 $x^2 + y^2 = 25$ と直線 $y = x + 1$ (2) 円 $x^2 + y^2 = 8$ と直線 $x + y = 4$

幾何学直線交点座標代数
2025/7/3

1. 問題の内容

以下の2つの問題について、円と直線の交点の座標を求めます。
(1) 円 x2+y2=25x^2 + y^2 = 25 と直線 y=x+1y = x + 1
(2) 円 x2+y2=8x^2 + y^2 = 8 と直線 x+y=4x + y = 4

2. 解き方の手順

(1)
y=x+1y = x + 1x2+y2=25x^2 + y^2 = 25 に代入します。
x2+(x+1)2=25x^2 + (x + 1)^2 = 25
x2+x2+2x+1=25x^2 + x^2 + 2x + 1 = 25
2x2+2x24=02x^2 + 2x - 24 = 0
x2+x12=0x^2 + x - 12 = 0
(x+4)(x3)=0(x + 4)(x - 3) = 0
x=4x = -4 または x=3x = 3
x=4x = -4 のとき、y=4+1=3y = -4 + 1 = -3
x=3x = 3 のとき、y=3+1=4y = 3 + 1 = 4
(2)
x+y=4x + y = 4 より、y=4xy = 4 - x
これを x2+y2=8x^2 + y^2 = 8 に代入します。
x2+(4x)2=8x^2 + (4 - x)^2 = 8
x2+168x+x2=8x^2 + 16 - 8x + x^2 = 8
2x28x+8=02x^2 - 8x + 8 = 0
x24x+4=0x^2 - 4x + 4 = 0
(x2)2=0(x - 2)^2 = 0
x=2x = 2
x=2x = 2 のとき、y=42=2y = 4 - 2 = 2

3. 最終的な答え

(1) (4,3)(-4, -3), (3,4)(3, 4)
(2) (2,2)(2, 2)

「幾何学」の関連問題

14個の合同な直角二等辺三角形を下図のように並べたとき、平行四辺形(正方形と長方形を含む)は全部で37個ある。37個を導き出す方法を考える。

図形平行四辺形正方形組み合わせ
2025/7/4

(1) 円に内接する三角形ABCにおいて、$AB = 10$, $BC = 6$, $\angle B = 120^\circ$である。弦ACに関して点Bと反対側の弧AC上に点Pをとる。 * ...

三角形四角形余弦定理正弦定理確率漸化式
2025/7/3

$0 < \theta < \pi$ を満たす $\theta$ に対して、平面上の3点 A(1, 0), B($\cos\theta$, $\sin\theta$), C($\cos\theta$,...

三角比面積最大値微分
2025/7/3

2つの直線 $y = mx + 5$ と $y = 3x - 6$ のなす角が $\frac{\pi}{4}$ であるとき、定数 $m$ の値を求めよ。

直線角度傾きtan絶対値方程式
2025/7/3

半径 $r$ の円 $x^2 + y^2 = r^2$ と直線 $x + 2y - 5 = 0$ が接するとき、$r$ の値を求める。

直線接する距離半径
2025/7/3

円 $x^2 + y^2 = 5$ と直線 $y = 2x + m$ について、 (1) 円と直線が共有点をもつとき、定数 $m$ の値の範囲を求めよ。 (2) 円と直線が接するとき、定数 $m$ の...

直線共有点接線距離座標
2025/7/3

図1と図2を参照して、ゴンドラの水平方向の変位 $d$ と、地面からの高さ $h$ を $\theta$ で表す。また、$0 \le \theta < \pi$ の範囲で、ゴンドラの高さが30mになる...

三角関数高さ変位
2025/7/3

与えられた3点を通る円の方程式を求める問題です。 (1) A(1, 1), B(2, 1), C(-1, 0) (2) A(1, 3), B(5, -5), C(4, 2)

円の方程式座標平面連立方程式
2025/7/3

観覧車のゴンドラの位置に関する問題です。観覧車の半径が50m、最低地点の高さが10mであり、ゴンドラが最低地点から角度$\theta$だけ回転したとき、支柱からの距離 $d$ と地表からの高さ $h$...

三角関数座標高さ距離
2025/7/3

与えられた2つの2次方程式がそれぞれどのような図形を表すか答える問題です。 (1) $x^2 + y^2 + 4x - 2y - 4 = 0$ (2) $x^2 + y^2 + 6x + 8y + 9...

2次方程式平方完成図形
2025/7/3