$\triangle ABC$ において、$b=2$, $c=\sqrt{2}$, $C=30^\circ$のとき、$a$, $A$, $B$を求める問題です。幾何学三角比正弦定理三角形2025/7/41. 問題の内容△ABC\triangle ABC△ABC において、b=2b=2b=2, c=2c=\sqrt{2}c=2, C=30∘C=30^\circC=30∘のとき、aaa, AAA, BBBを求める問題です。2. 解き方の手順まず、正弦定理を用いて角 BBB を求めます。bsinB=csinC\frac{b}{\sin B} = \frac{c}{\sin C}sinBb=sinCc2sinB=2sin30∘\frac{2}{\sin B} = \frac{\sqrt{2}}{\sin 30^\circ}sinB2=sin30∘22sinB=21/2\frac{2}{\sin B} = \frac{\sqrt{2}}{1/2}sinB2=1/222sinB=22\frac{2}{\sin B} = 2\sqrt{2}sinB2=22sinB=222=12\sin B = \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}sinB=222=21よって、B=45∘B = 45^\circB=45∘または135∘135^\circ135∘です。(i) B=45∘B = 45^\circB=45∘の場合:A=180∘−(B+C)=180∘−(45∘+30∘)=180∘−75∘=105∘A = 180^\circ - (B+C) = 180^\circ - (45^\circ + 30^\circ) = 180^\circ - 75^\circ = 105^\circA=180∘−(B+C)=180∘−(45∘+30∘)=180∘−75∘=105∘正弦定理より、asinA=csinC\frac{a}{\sin A} = \frac{c}{\sin C}sinAa=sinCca=csinAsinC=2sin105∘sin30∘=2sin(60∘+45∘)1/2=22(sin60∘cos45∘+cos60∘sin45∘)a = \frac{c \sin A}{\sin C} = \frac{\sqrt{2} \sin 105^\circ}{\sin 30^\circ} = \frac{\sqrt{2} \sin (60^\circ + 45^\circ)}{1/2} = 2\sqrt{2} (\sin 60^\circ \cos 45^\circ + \cos 60^\circ \sin 45^\circ)a=sinCcsinA=sin30∘2sin105∘=1/22sin(60∘+45∘)=22(sin60∘cos45∘+cos60∘sin45∘)a=22(3212+1212)=22(3+122)=3+1a = 2\sqrt{2} \left( \frac{\sqrt{3}}{2} \frac{1}{\sqrt{2}} + \frac{1}{2} \frac{1}{\sqrt{2}} \right) = 2\sqrt{2} \left( \frac{\sqrt{3} + 1}{2\sqrt{2}} \right) = \sqrt{3} + 1a=22(2321+2121)=22(223+1)=3+1(ii) B=135∘B = 135^\circB=135∘の場合:A=180∘−(B+C)=180∘−(135∘+30∘)=180∘−165∘=15∘A = 180^\circ - (B+C) = 180^\circ - (135^\circ + 30^\circ) = 180^\circ - 165^\circ = 15^\circA=180∘−(B+C)=180∘−(135∘+30∘)=180∘−165∘=15∘正弦定理より、asinA=csinC\frac{a}{\sin A} = \frac{c}{\sin C}sinAa=sinCca=csinAsinC=2sin15∘sin30∘=2sin(45∘−30∘)1/2=22(sin45∘cos30∘−cos45∘sin30∘)a = \frac{c \sin A}{\sin C} = \frac{\sqrt{2} \sin 15^\circ}{\sin 30^\circ} = \frac{\sqrt{2} \sin (45^\circ - 30^\circ)}{1/2} = 2\sqrt{2} (\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ)a=sinCcsinA=sin30∘2sin15∘=1/22sin(45∘−30∘)=22(sin45∘cos30∘−cos45∘sin30∘)a=22(1232−1212)=22(3−122)=3−1a = 2\sqrt{2} \left( \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2} \right) = 2\sqrt{2} \left( \frac{\sqrt{3} - 1}{2\sqrt{2}} \right) = \sqrt{3} - 1a=22(2123−2121)=22(223−1)=3−13. 最終的な答え(i) B=45∘B = 45^\circB=45∘ の場合:a=3+1a = \sqrt{3} + 1a=3+1, A=105∘A = 105^\circA=105∘, B=45∘B = 45^\circB=45∘(ii) B=135∘B = 135^\circB=135∘ の場合:a=3−1a = \sqrt{3} - 1a=3−1, A=15∘A = 15^\circA=15∘, B=135∘B = 135^\circB=135∘