与えられた式 $-5x - y - 3$ において、文字を含む項とその係数の組み合わせとして正しいものをすべて答える。

代数学式の計算係数文字式
2025/7/5

1. 問題の内容

与えられた式 5xy3-5x - y - 3 において、文字を含む項とその係数の組み合わせとして正しいものをすべて答える。

2. 解き方の手順

まず、与えられた式を項ごとに分解します。
5xy3=(5x)+(y)+(3)-5x - y - 3 = (-5x) + (-y) + (-3)
次に、各項における文字と係数を確認します。
* 5x-5x の項:文字は xx であり、係数は 5-5 です。
* y-y の項:文字は yy であり、係数は 1-1 です。(y=1×y-y = -1 \times y であるため)
* 3-3 の項:これは定数項であり、文字を含みません。

3. 最終的な答え

* xx の項の係数は 5-5
* yy の項の係数は 1-1

「代数学」の関連問題

次の3つの対数の値をそれぞれ求める問題です。 (1) $\log_3 \sqrt{27}$ (2) $\frac{1}{\log_{10} 1000}$ (3) $\log_2 0.25$

対数指数対数の性質
2025/7/5

与えられた数学の問題B1を解く。問題B1は5つの小問から構成されており、それぞれ因数分解、不等式、2次関数、順列、箱ひげ図に関する問題である。

因数分解不等式二次関数順列箱ひげ図
2025/7/5

$x = \frac{1}{\sqrt{7} + \sqrt{5}}$、$y = \frac{1}{\sqrt{7} - \sqrt{5}}$ のとき、次の式の値を求めます。 (1) $x+y$ (2...

式の計算有理化平方根
2025/7/5

与えられた方程式 $t (\frac{1}{2}gt + v_0 \sin \theta) = 0$ を $t$ について解く問題です。ここで、$g$, $v_0$, $\theta$ は定数とします...

方程式二次方程式解の公式物理
2025/7/5

2次関数 $f(x) = 2x^2 - 6x + a$ (aは定数)がある。この関数のグラフの軸と、最小値が $\frac{1}{2}$ であるときのaの値を求めよ。

二次関数平方完成最小値グラフの軸
2025/7/5

不等式 $-8 \le 3x - 5 \le 4$ の解を求め、その解を集合 $A$ とする。また、集合 $B$ を $\{x | x \ge a\}$ とする。$A \subseteq B$ となる...

不等式集合解の範囲包含関係
2025/7/5

与えられた式 $ax^2 + 2ax + x + 2$ を因数分解した結果を求める。

因数分解多項式共通因数
2025/7/5

与えられた2つの条件から、2次関数を決定する問題です。 1. $x=-2$ で最大値 $6$ をとる。

二次関数最大値グラフ頂点方程式
2025/7/5

媒介変数 $t$ によって表される点 $(x, y)$ がどのような曲線を描くかを問う問題です。問題文には6つの $(x, y)$ が与えられており、それぞれについて $t$ を消去して $x$ と ...

媒介変数曲線三角関数二次曲線放物線
2025/7/5

与えられた行列 $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ による線形写像 $y = Ax$ によって、以下の領域がどのように写像されるかを図...

線形代数線形写像行列領域
2025/7/5