## 1. 問題の内容解析学積分三角関数置換積分不定積分2025/7/5##1. 問題の内容与えられた積分を計算します。(1) ∫cos2(3x)dx\int \cos^2(3x) dx∫cos2(3x)dx(2) ∫x2x+1dx\int \frac{x}{\sqrt{2x+1}} dx∫2x+1xdx##2. 解き方の手順**(1) ∫cos2(3x)dx\int \cos^2(3x) dx∫cos2(3x)dx**ステップ1: cos2(x)\cos^2(x)cos2(x) の倍角の公式を使用します。cos2(x)=1+cos(2x)2\cos^2(x) = \frac{1 + \cos(2x)}{2}cos2(x)=21+cos(2x)したがって、cos2(3x)=1+cos(6x)2\cos^2(3x) = \frac{1 + \cos(6x)}{2}cos2(3x)=21+cos(6x)ステップ2: 積分を計算します。∫cos2(3x)dx=∫1+cos(6x)2dx\int \cos^2(3x) dx = \int \frac{1 + \cos(6x)}{2} dx∫cos2(3x)dx=∫21+cos(6x)dx=12∫(1+cos(6x))dx= \frac{1}{2} \int (1 + \cos(6x)) dx=21∫(1+cos(6x))dx=12[∫1dx+∫cos(6x)dx]= \frac{1}{2} \left[ \int 1 dx + \int \cos(6x) dx \right]=21[∫1dx+∫cos(6x)dx]=12[x+16sin(6x)]+C= \frac{1}{2} \left[ x + \frac{1}{6} \sin(6x) \right] + C=21[x+61sin(6x)]+C=12x+112sin(6x)+C= \frac{1}{2}x + \frac{1}{12} \sin(6x) + C=21x+121sin(6x)+C**(2) ∫x2x+1dx\int \frac{x}{\sqrt{2x+1}} dx∫2x+1xdx**ステップ1: 置換積分を行います。u=2x+1u = 2x + 1u=2x+1 と置くと、du=2dxdu = 2dxdu=2dx より dx=12dudx = \frac{1}{2}dudx=21du となります。また、x=u−12x = \frac{u-1}{2}x=2u−1 です。ステップ2: 積分を書き換えます。∫x2x+1dx=∫u−12u⋅12du\int \frac{x}{\sqrt{2x+1}} dx = \int \frac{\frac{u-1}{2}}{\sqrt{u}} \cdot \frac{1}{2} du∫2x+1xdx=∫u2u−1⋅21du=14∫u−1udu= \frac{1}{4} \int \frac{u-1}{\sqrt{u}} du=41∫uu−1du=14∫uu−1udu= \frac{1}{4} \int \frac{u}{\sqrt{u}} - \frac{1}{\sqrt{u}} du=41∫uu−u1du=14∫(u1/2−u−1/2)du= \frac{1}{4} \int (u^{1/2} - u^{-1/2}) du=41∫(u1/2−u−1/2)du=14[∫u1/2du−∫u−1/2du]= \frac{1}{4} \left[ \int u^{1/2} du - \int u^{-1/2} du \right]=41[∫u1/2du−∫u−1/2du]=14[u3/23/2−u1/21/2]+C= \frac{1}{4} \left[ \frac{u^{3/2}}{3/2} - \frac{u^{1/2}}{1/2} \right] + C=41[3/2u3/2−1/2u1/2]+C=14[23u3/2−2u1/2]+C= \frac{1}{4} \left[ \frac{2}{3}u^{3/2} - 2u^{1/2} \right] + C=41[32u3/2−2u1/2]+C=16u3/2−12u1/2+C= \frac{1}{6}u^{3/2} - \frac{1}{2}u^{1/2} + C=61u3/2−21u1/2+Cステップ3: uuu を xxx に戻します。=16(2x+1)3/2−12(2x+1)1/2+C= \frac{1}{6}(2x+1)^{3/2} - \frac{1}{2}(2x+1)^{1/2} + C=61(2x+1)3/2−21(2x+1)1/2+C=162x+1((2x+1)−3)+C= \frac{1}{6}\sqrt{2x+1}((2x+1)-3) + C=612x+1((2x+1)−3)+C=162x+1(2x−2)+C= \frac{1}{6}\sqrt{2x+1}(2x-2) + C=612x+1(2x−2)+C=132x+1(x−1)+C= \frac{1}{3}\sqrt{2x+1}(x-1) + C=312x+1(x−1)+C##3. 最終的な答え(1) ∫cos2(3x)dx=12x+112sin(6x)+C\int \cos^2(3x) dx = \frac{1}{2}x + \frac{1}{12} \sin(6x) + C∫cos2(3x)dx=21x+121sin(6x)+C(2) ∫x2x+1dx=13(x−1)2x+1+C\int \frac{x}{\sqrt{2x+1}} dx = \frac{1}{3}(x-1)\sqrt{2x+1} + C∫2x+1xdx=31(x−1)2x+1+C