$\int \frac{x}{\sqrt{2x+1}} dx$ を計算してください。解析学積分置換積分不定積分2025/7/51. 問題の内容∫x2x+1dx\int \frac{x}{\sqrt{2x+1}} dx∫2x+1xdx を計算してください。2. 解き方の手順まず、置換積分を行います。u=2x+1u = 2x+1u=2x+1 とおくと、du=2dxdu = 2 dxdu=2dx となり、dx=12dudx = \frac{1}{2} dudx=21du です。また、x=u−12x = \frac{u-1}{2}x=2u−1 となります。したがって、∫x2x+1dx=∫(u−1)/2u12du=14∫u−1udu=14∫(u1/2−u−1/2)du\int \frac{x}{\sqrt{2x+1}} dx = \int \frac{(u-1)/2}{\sqrt{u}} \frac{1}{2} du = \frac{1}{4} \int \frac{u-1}{\sqrt{u}} du = \frac{1}{4} \int (u^{1/2} - u^{-1/2}) du∫2x+1xdx=∫u(u−1)/221du=41∫uu−1du=41∫(u1/2−u−1/2)du14∫(u1/2−u−1/2)du=14(23u3/2−2u1/2)+C=16u3/2−12u1/2+C\frac{1}{4} \int (u^{1/2} - u^{-1/2}) du = \frac{1}{4} (\frac{2}{3}u^{3/2} - 2u^{1/2}) + C = \frac{1}{6} u^{3/2} - \frac{1}{2} u^{1/2} + C41∫(u1/2−u−1/2)du=41(32u3/2−2u1/2)+C=61u3/2−21u1/2+Cここで、u=2x+1u = 2x+1u=2x+1 を代入して、16(2x+1)3/2−12(2x+1)1/2+C=16(2x+1)3/2−36(2x+1)1/2+C=16(2x+1)1/2[(2x+1)−3]+C=16(2x+1)1/2(2x−2)+C=13(x−1)2x+1+C\frac{1}{6} (2x+1)^{3/2} - \frac{1}{2} (2x+1)^{1/2} + C = \frac{1}{6} (2x+1)^{3/2} - \frac{3}{6} (2x+1)^{1/2} + C = \frac{1}{6}(2x+1)^{1/2} [(2x+1) - 3] + C = \frac{1}{6}(2x+1)^{1/2} (2x-2) + C = \frac{1}{3}(x-1)\sqrt{2x+1} + C61(2x+1)3/2−21(2x+1)1/2+C=61(2x+1)3/2−63(2x+1)1/2+C=61(2x+1)1/2[(2x+1)−3]+C=61(2x+1)1/2(2x−2)+C=31(x−1)2x+1+C3. 最終的な答え13(x−1)2x+1+C\frac{1}{3}(x-1)\sqrt{2x+1} + C31(x−1)2x+1+C