導関数の定義に従って、関数 $f(x) = (2x - 1)^3$ を微分する。解析学微分導関数極限関数の微分2025/7/51. 問題の内容導関数の定義に従って、関数 f(x)=(2x−1)3f(x) = (2x - 1)^3f(x)=(2x−1)3 を微分する。2. 解き方の手順導関数の定義は次の通りです。f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)まず、f(x+h)f(x + h)f(x+h)を計算します。f(x+h)=(2(x+h)−1)3=(2x+2h−1)3f(x + h) = (2(x + h) - 1)^3 = (2x + 2h - 1)^3f(x+h)=(2(x+h)−1)3=(2x+2h−1)3次に、f(x+h)−f(x)f(x + h) - f(x)f(x+h)−f(x)を計算します。f(x+h)−f(x)=(2x+2h−1)3−(2x−1)3f(x + h) - f(x) = (2x + 2h - 1)^3 - (2x - 1)^3f(x+h)−f(x)=(2x+2h−1)3−(2x−1)3ここで、A=2x+2h−1A = 2x + 2h - 1A=2x+2h−1、B=2x−1B = 2x - 1B=2x−1とおくと、A3−B3=(A−B)(A2+AB+B2)A^3 - B^3 = (A - B)(A^2 + AB + B^2)A3−B3=(A−B)(A2+AB+B2)が使えます。A−B=(2x+2h−1)−(2x−1)=2hA - B = (2x + 2h - 1) - (2x - 1) = 2hA−B=(2x+2h−1)−(2x−1)=2hA2=(2x+2h−1)2=(2x−1+2h)2=(2x−1)2+4h(2x−1)+4h2A^2 = (2x + 2h - 1)^2 = (2x - 1 + 2h)^2 = (2x - 1)^2 + 4h(2x - 1) + 4h^2A2=(2x+2h−1)2=(2x−1+2h)2=(2x−1)2+4h(2x−1)+4h2AB=(2x+2h−1)(2x−1)=(2x−1)2+2h(2x−1)AB = (2x + 2h - 1)(2x - 1) = (2x - 1)^2 + 2h(2x - 1)AB=(2x+2h−1)(2x−1)=(2x−1)2+2h(2x−1)B2=(2x−1)2B^2 = (2x - 1)^2B2=(2x−1)2したがって、A2+AB+B2=3(2x−1)2+6h(2x−1)+4h2A^2 + AB + B^2 = 3(2x - 1)^2 + 6h(2x - 1) + 4h^2A2+AB+B2=3(2x−1)2+6h(2x−1)+4h2よって、f(x+h)−f(x)=(2h)[3(2x−1)2+6h(2x−1)+4h2]=6h(2x−1)2+12h2(2x−1)+8h3f(x + h) - f(x) = (2h)[3(2x - 1)^2 + 6h(2x - 1) + 4h^2] = 6h(2x - 1)^2 + 12h^2(2x - 1) + 8h^3f(x+h)−f(x)=(2h)[3(2x−1)2+6h(2x−1)+4h2]=6h(2x−1)2+12h2(2x−1)+8h3次に、f(x+h)−f(x)h\frac{f(x + h) - f(x)}{h}hf(x+h)−f(x)を計算します。f(x+h)−f(x)h=6h(2x−1)2+12h2(2x−1)+8h3h=6(2x−1)2+12h(2x−1)+8h2\frac{f(x + h) - f(x)}{h} = \frac{6h(2x - 1)^2 + 12h^2(2x - 1) + 8h^3}{h} = 6(2x - 1)^2 + 12h(2x - 1) + 8h^2hf(x+h)−f(x)=h6h(2x−1)2+12h2(2x−1)+8h3=6(2x−1)2+12h(2x−1)+8h2最後に、limh→0f(x+h)−f(x)h\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}limh→0hf(x+h)−f(x)を計算します。f′(x)=limh→0[6(2x−1)2+12h(2x−1)+8h2]=6(2x−1)2f'(x) = \lim_{h \to 0} [6(2x - 1)^2 + 12h(2x - 1) + 8h^2] = 6(2x - 1)^2f′(x)=limh→0[6(2x−1)2+12h(2x−1)+8h2]=6(2x−1)2(2x−1)2=4x2−4x+1(2x-1)^2 = 4x^2 - 4x + 1(2x−1)2=4x2−4x+1なので、f′(x)=6(4x2−4x+1)=24x2−24x+6f'(x) = 6(4x^2 - 4x + 1) = 24x^2 - 24x + 6f′(x)=6(4x2−4x+1)=24x2−24x+63. 最終的な答えf′(x)=6(2x−1)2=24x2−24x+6f'(x) = 6(2x-1)^2 = 24x^2 - 24x + 6f′(x)=6(2x−1)2=24x2−24x+6